An Inside View on ABET Engineering Accreditor Training

Joseph T. Wunderlich, Ph.D. Elizabethtown College Computer Engineering Program

95% of participants ABET accreditors

- Speaker presently helping accredit program(s) at Elizabethtown College
 - previous experience with EET accreditation at Purdue

- What is ABET?
- Program requirements
 - Curriculum
 - Objectives
 - Outcomes
- > Are you ready for ABET?
- Example program

ABET is:

- The Accreditation Board for Engineering and Technology
- > Since 1932
- > 31 engineering and technical societies
- Accredits >2500 engineering, technology, computing, and applied science programs at > 550 colleges & universities

ABET structure

ABET standards

- > ABET standards prior to 2000
 - more "prescribed"
- > ABET 2000 standards
 - set up systems with feedback
 - define your own program
 - give supporting evidence for quality and
 - coverage
 - ABET will hold you to **your** standards

Program must:

- Set goals
- Have internal assessment involving all contributors to program
- Document results (based on "Outcomes")
- Demonstrate results used to <u>continuously</u> improve

Program should be defined by:

> CURRICULUM
> OBJECTIVES
> OUTCOMES

CURRICULUM

- Different ABET requirements for each type of program
- Some ABET requirements apply to all programs

Example: a **Computer Engineering** CURRICULUM should include:

- Breadth and depth across a range of engineering implied by topic
- Probability and statistics, calculus through differential equations, discrete math
- Basic sciences, computer science, and engineering necessary to <u>analyze and design</u> complex electronics and software

All CURRICULUMS should:

- Not allow skipping prerequisites
- > Have a major design component
 - a "culminating experience"
 - based on knowledge and skills acquired in earlier coursework
- > Ok to require non-typical courses
 - just explain why

OBJECTIVES

- Clearly state in vision and mission
- Split objectives ok
 - e.g., "equal emphasis on preparing students for graduate school or employment."
- Non-typical objectives ok
 - e.g., "program strengthened by multi-disciplinary setting"
- Giving students tools for life-long learning is always a good objective

OUTCOMES

- Typically <u>faculty</u> assess outcomes for "major" courses
- Surveying graduates <u>not</u> a good way to assess outcomes
- > Outcomes specified as "Criterion 3"
 - specify whether or not criteria equally weighted and why
 - all criteria must be met by some part of program

ABET "<u>Criterion 3</u>" OUTCOMES:

(a) An ability to apply knowledge of <u>mathematics</u>, <u>science and engineering</u>.

- (b) An ability to <u>design and construct experiments</u>, as well as to <u>analyze and interpret data</u>.
- (c) An ability to <u>design a system, component, or process</u> to meet desired needs.
- (d) An ability to function on <u>multi-disciplinary</u> teams.
- (e) An ability to <u>identify</u>, formulate and solve engineering <u>problems</u>.

ABET "<u>Criterion 3</u>" OUTCOMES (continued):

- (f) An understanding of <u>professional and ethical</u> <u>responsibility</u>.
- (g) An ability to communicate effectively.
- (h) A broad education necessary to understand the impact of engineering solutions in a <u>global and societal</u> context.
- (i) A recognition of the need for, and an ability to engage in <u>life-long learning</u>.
- (j) A knowledge of <u>contemporary issues</u>.
- (k) An ability to use the <u>techniques</u>, <u>skills</u>, <u>and modern</u> <u>engineering tools</u> necessary for engineering practice.

- Is the program sufficiently staffed?
 - ABET uses the "FTE" (Full Time Equivalent)
 - 1 FTE may be composite of several faculty members
 - ABET judges if enough faculty for:
 - student-faculty interaction, advising, service activities, professional development, and interaction with industry
 - faculty qualifications also assessed

- Have there been enough graduates from program?
- > Is it clear how program is administered?
 - who establishes content?
 - department Chairs?
 - program coordinators?
 - both?
 - accreditor team will be formed accordingly

- Is there enough equipment to support program?
 - If a concern, include acquiring equipment as part of "Continuous Improvement Plan"
 - demonstrate how added equipment has improved program in the past
- Have "Outcomes" been achieved regardless of any lack of resources? (e.g., money, equipment, faculty)

- Is institution fully accredited?
- Has institution pledged enough resources (money and people) to the accreditation process?
 - self-study and documentation takes much time and effort
- > Has "Self-Study" been completed?

- Elizabethtown College, Elizabethtown, PA
- Strong liberal arts core in curriculum
- "U.S. News America's Best Colleges":
 - ranked #2 comprehensive, bachelors, North
 - admissions standard: "more selective"
 - 1,735 students
 - 26% business, 19% education, 12% health professions, 10% biology, 10% communications

- Computer Engineering (CENGR) most likely candidate for accreditation
- > Others being considered
 - Industrial Engineering (IENGR)
 - Engineering Physics (EGRPY)
- Relationship with related majors considered
 - Computer Science (CS and CSBIS)
 - Physics (PHYS)
 - 3-2's (PRENG) -- BA Etown, BS Engr. PSU

Example CENGR outcomes

Elizabethtown College Computer Engineering Course			ABET Outcomes Assessment Scored from 0 to 5 [*]											
		Required	a	b	c	d	e	f	g	h	i	j	k	Comments
EGR 100 • Intro to Engineering I	2/4	YES												
EGR 110 • Intro to Engineering II	2/4	YES												
CS 121 • Computer Science I (C+ programming I)	4/4	YES												
CS 122 • Computer Science II (C+ programming II)	4/4	YES												
EGR 210 • Circuit Analysis (analog circuits I)	4/6	YES												
EGR 220 • Electronics (analog circuits II)	4/6	YES												
CS 221 • Data Structures	4/4	YES												
CS/EGR 230 • Microcomputer Architecture	4/4	YES	4	2	5	2	5	3	4	3	5	5	5	board-level design
Phys 302 • Electromagnetism	3/3	YES												
EGR 310 • Signals and Systems	3/3	YES												
CS/EGR 332 • Computer Org. and Digital Design I	4/4	YES	5	4	5	2	5	3	3	1	4	4	5	includes intro to assembly
CS/EGR 333 • Digital Design II and Interfacing	4/6	YES	5	5	5	4	5	4	4	2	4	4	5	includes 80251 assembly
CS/EGR 342 • Computer Networking	4/4	NO												common elective
CS 375 • Artificial Intelligence	4/4	NO	5	5	5	3	5	5	5	5	5	5	5	common elective
EGR 410 • Control Systems	3/3	YES												
CS/EGR 421 • Compiler Design	4/4	NO												common elective
CS/EGR 422 • Operating Systems	4/4	YES												
CS/EGR 433 • Advanced Computer Engineering	4/6	YES	5	5	5	4	5	4	4	2	4	5	5	
EGR 491 • Senior Project	4/x	YES	5	5	5	1	5	4	5	3	5	5	5	

Example FTE's for CENGR

Faculty	Degrees	Rank	Primary Department	Years of Teaching Experience	Years of Industry Experience	Full Time Equivalent
Member #1	BS, MS, PhD	Assistant Prof.	Phys & Engr	4	5	1
Member #2	BS, MS	Lecturer	Phys & Engr	15	30	1
Member #3	BS, MS, PhD	Associate Prof.	Phys & Engr	7	15	1
Member #4	BS, MS, PhD	Associate Prof.	Comp. Sci.	20	2	1
Member #5	BS, MS, PhD	Assistant Prof.	Phys & Engr	3	4	1
Member #6	BS, MS	Associate Prof.	Comp. Sci.	30	2	1
Member #7	BS, MS, PhD	Professor	Phys & Engr	15	2	1
Member #8	BS, M Eng, PhD	Assistant Prof.	Comp. Sci.	7	7	1
Member #9	BS, MS, PhD	Associate Prof.	Comp. Sci.	30	2	1

Questions still being discussed

- FTE distribution?
- Best option for Etown College?
 - BS CENGR
 - BS CENGR, BS Engineering with other options
 - BS ECE (EE newly created program)
 - BS Engineering with options (including CENGR)
- ➢ B Eng vs. BS?
- Accredit any title?
- Minimum number of grads per year?
- Where to find best consultants?