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THEME 3

1. TOPICS
There are some problems whose solution, although not immediately ob-

vious, becomes natural if we introduce convenient notation, reinterpret the
problem, or make use of symmetry. These are the types of problems that we
will be looking at today.

2. PRACTICE PROBLEMS
The first group of problems involve symmetry in one way or another. In

situations like this we can use the symmetry to reduce the problem to an easier
(although non-symmetric) problem. On some rare ocasions, the symmetry in
the problem is a “red herring”; it helps make the problem work, but it does
not help in solving it. One or more of the problems below are like this (and
I’m not telling which).

1. Solve the system {
x2 + xy + y2 = 13
x2y2 + xy = 12

2. (1998B2) Given a point (a, b) with 0 < b < a, determine the minimum
perimeter of a triangle with one vertex at (a, b), one on the x-axis, and
one on the line y = x. You may assume that a triangle of minimum
perimeter exists.

3. (UDN001) Solve the following equation for x:

(x2 − x + 1)3

x2(x− 1)2
=

(π2 − π + 1)3

π2(π − 1)2

4. (UDN026) Find all the solutions of the system




cos x1 = x2

cos x2 = x3

· · · · · ·
cos x98 = x99

cos x99 = x1

5. (1998B1) Find the minimum value of

(x + 1/x)6 − (x6 + 1/x6)− 2

(x + 1/x)3 + (x3 + 1/x3)

for x > 0.
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6. (UDN028) The real numbers a1, a2, . . . , an satisfy the inequalities




a1 − 2a2 + a3 ≥ 0
a2 − 2a3 + a4 ≥ 0
· · · · · ·
an−2 − 2an−1 + an ≥ 0
an−1 − 2an + a1 ≥ 0
an − 2a1 + a2 ≥ 0

Show that a1 = a2 = · · · = an

7. (1997A5) Let Nn denote the number of ordered n-tuples of positive in-
tegers (a1, a2, . . . , an) such that 1/a1+1/a2+ . . .+1/an = 1. Determine
whether N10 is even or odd.

8. (1988B1) A composite (positive integer) is a product ab with a and
b not necessarily distinct integers in {2, 3, 4, . . .}. Show that every
composite is expressible as xy+xz+yz+1, with x, y, z positive integers.

9. (1993A5) Show that

∫ −10

−100

(
x2 − x

x3 − 3x + 1

)2

dx+

∫ 1
11

1
101

(
x2 − x

x3 − 3x + 1

)2

dx+

∫ 11
10

101
100

(
x2 − x

x3 − 3x + 1

)2

dx

is a rational number.

10. Compute the integrals (Chl01,Chl01,1980A3,1987B1,...):

(a)

∫ π/2

−π/2

cos x

1 + ex
dx (b)

∫ π/2

0

√
sin x√

sin x +
√

cos x
dx

(c)

∫ π/2

0

1

1 + (tan x)
√

2
dx (d)

∫ 4

2

√
ln(9− x)√

ln(9− x) +
√

ln(x + 3)
dx

(e)

∫ ∞

0

ln x

1 + x2
dx (f)

∫ 1

0

ln sin
πx

2
dx

11. (1985A1) Let k be the smallest positive integer with the following
property:

There are distinct integers m1, m2, m3, m4, m5 such that the

polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Find, with proof, a set of integers m1, m2, m3, m4, m5 for which this
minimum k is achieved.
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The second group consists of problems that look hard, but become much
easier if the right notation, interpretation, or representation is found. A cum-
bersome algebraic problem can become obvious if represented geometrically,
complicated relationships become easy to grasp if represented by a graph, and
painting some numbers green or red can sometimes give an unexpected burst
of insight.

12. (Aqu8P1) Given six people, prove that it is always possible to chose
three of them in such a way that either every two of the three know
each other, or every two of the three don’t know each other.

13. (Aqu8P6) A countably infinite number of bags are labeled with the
positive integers 1, 2, . . . etc. In each bag there is a card with a positive
integer, different from the number on the label. Show that it is possible
to chose infinitely many bags, so that the numbers on the cards in these
bags are different from all the numbers on the labels of these bags.

14. (Aqu8P9) At a reception, a large number of men and women are
present. It turns out that each man knows exactly 10 of the women,
and each woman knows exactly 10 of the men. Show that there is the
same number of men and women at this reception.

15. (2004A5) An m × n checkerboard is colored randomly: each square
is independently assigned red or black with probability 1/2. We say
that two squares, p and q, are in the same connected monochromatic
component if there is a sequence of squares, all of the same color, start-
ing at p and ending at q, in which successive squares in the sequence
share a common side. Show that the expected number of connected
monochromatic regions is greater than mn/8.

16. (1985A1) Determine, with proof, the number of ordered triples
(A1, A2, A3) of sets which have the property that

(i) A1 ∪ A2 ∪ A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and

(ii) A1 ∩ A2 ∩ A3 = Ø,

where Ø denotes the empty set. Express the answer in the form
2a3b5c7d, where a, b, c, and d are nonnegative integers.

17. (2003A6) For a set S of nonnegative integers, let rS(n) denote the
number of ordered pairs (s1, s2) such that s1 ∈ S, s2 ∈ S, s1 6= s2, and
s1 + s2 = n. Is it possible to partition the nonnegative integers into
two sets A and B in such a way that rA(n) = rB(n) for all n?
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18. (Aqu10P5) All the five vertices of a pentagon have integer coordinates
on the plane, and all the sides of the pentagon have integer lengths.
Show that its perimeter is an even number.

19. (Aqu11P6) The positive real numbers x, y, and z satisfy the equalities





x2 +
√

3xy + y2 = 25
y2 + z2 = 9

z2 + zx + x2 = 16

Compute the value of the expression xy + 2yz +
√

3zx.

20. (1994A2) Let A be the area of the region in the first quadrant bounded
by the line y = 1

2
x, the x-axis, and the ellipse 1

9
x2 + y2 = 1. Find the

positive number m such that A is equal to the area of the region in the
first quadrant bounded by the line y = mx, the y-axis, and the ellipse
1
9
x2 + y2 = 1.

21. (1995B2) An ellipse, whose semi-axes have lengths a and b, rolls with-
out slipping on the curve y = c sin

(
x
a

)
. How are a, b, c related, given

that the ellipse completes one revolution when it traverses one period
of the curve?

22. (1996A1) Find the least number A such that for any two squares of
combined area 1, a rectangle of area A exists such that the two squares
can be packed in the rectangle (without the interiors of the squares
overlapping). You may assume that the sides of the squares will be
parallel to the sides of the rectangle.

23. (2001B1) Let n be an even positive integer. Write the numbers
1, 2, . . . , n2 in the squares of an n × n grid so that the k-th row, from
left to right, is

(k − 1)n + 1, (k − 1)n + 2, . . . , (k − 1)n + n.

Color the squares of the grid so that half of the squares in each row and
in each column are red and the other half are black (a checkerboard
coloring is one possibility). Prove that for each coloring, the sum of
the numbers on the red squares is equal to the sum of the numbers on
the black squares.
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