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THEME 4

1. TOPICS
Today I will focus on two loosely related topics: linear recursions and

Linear Algebra.

Let a0, a1, a2, . . . , an, . . . be a sequence that satisfies the recursive relation

an = pan−1 + qan−2,

with a0 and a1 given. A general formula for the nth term can be found as
follows. Write the characteristic equation

λ2 − pλ− q = 0,

and let λ1 and λ2 be its roots. Then, if λ1 6= λ2,

an = C1λ
n
1 + C2λ

n
2 ,

and if λ1 = λ2, then
an = C1λ

n
1 + C2nλn

1 .

The constants C1 and C2 are determined from a0 and a1.
This rule can be proved easily by induction. It generalizes naturally for

recursions of higher order.

Some of the problems below are stolen from Ravi Vakil’s Putnam website at
Stanford.

2. PRACTICE PROBLEMS
The first problems are for practice with linear recursion.

1. The sequence q0, q1, q2, . . . satisfies qn = 3qn−2 − 2qn−3, and q0 = 0,
q1 = 1, q2 = 11. Find a general formula for qn .

2. Compute (
1 1
1 0

)n

.
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3. The sequence r1, r2, . . . satisfies rn = (5/2)rn−1 − rn−2, and r1 = 2004.
Suppose the sequence converges to a finite real number. Find r2.

4. The sequence G0, G1, G2, . . . consists of every other Fibonacci number.
Show that there exists a linear recursion of the form Gn = aGn−1 +
bGn−2. (Follow-up: How about a sequence consisting of every tenth
Fibonacci number. How do you know there’s a recursion? With integer
coefficients?)

5. Use the theory of linear recursive sequences to find a formula for the
sequence s0 = 1, s1 = 2, sn = sn−2. What do you observe? Now try a
sequence with period four, such as t0 = 1, t1 = 0, t2 = 0, t3 = 0, tn =
tn−4.

6. Let In =
∫ π/2

0
sinn x dx. Find a recurrence relation for In. Use this

relation to show that

I2n =
1× 3× 5× · · · × (2n− 1)

2× 4× 6× · · · × (2n)
· π

2
,

and

I2n+1 =
2× 4× 6× · · · × (2n− 2)

1× 3× 5× · · · × (2n− 1)
.

Write these formulas in terms of factorials.

7. (1984B6) A sequence of convex polygons (Pn), n ≥ 0, is defined in-
ductively as follows. P0 is an equilateral triangle with sides of length
1. Once Pn has been determined, its sides are trisected; the vertices
of Pn+1 are the interior trisection points of the sides of Pn. Thus Pn+1

is obtained by cutting corners of Pn, and Pn has 3 · 2n sides. (P1 is a
regular hexagon with sides of length 1/3.) Express limn→∞ Area(Pn)
in the form

√
a/b, where a and b are positive integers.
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Recursions in Probability.

8. Two ping pong players, A and B, agree to play several games. The
players are evenly matched; suppose, however, that whoever serves first
has probability p of winning that game (this may be player A in one
game, or player B in another). Suppose A serves first in the first game,
but thereafter the loser serves first. Let pn denote the probability that
A wins the nth game. Show that pn+1 = pn(1 − p) + (1 − pn)p. If p
is neither 0 nor 1, you might expect that the limit of pn is 1/2. Why?
Can you prove this?

9. A gambling graduate student tosses a fair coin and scores one point for
each head that turns up and two points for each tail. Prove that the
probability of the student scoring exactly n points at some time in a
sequence of n tosses is (2+(−1/2)n)/3. (Hint: Let pn denote the prob-
ability of scoring exactly n points at some time. Express pn in terms
of pn−1 or in terms of pn−1 and pn−2. Use this linear recursion to give
an inductive proof. Even better hint, useful in many circumstances:
you’ve been given the answer, so reverse-engineer the recursion, and
then try to prove it.)

Recursions in Determinants.

10. Calculate Vandermonde’s determinant
∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣

.

11. This problem deals with determinants of matrices of some special form.

(a) Let En denote the determinant of the n × n matrix having −1’s
below the main diagonal (from upper left to lower right) and 1’s on
and above the main diagonal. Show that E1 = 1, and En = 2En−1

for n > 1.

3



(b) Let Dn denote the determinant of the n×n matrix whose (i, j)th
entry (the element of the ith row and jth column) is the absolute
value of the difference of i and j. Show that

Dn = (−1)n−1(n− 1)2n−2.

(c) Evaluate the n × n determinant An whose (i, j)th entry is a|i−j|

by finding a recursive relationship between An and An−1.

(d) Let Fn denote the determinant of the n× n matrix with a on the
main diagonal, b on the superdiagonal (the diagonal immediately
above the main diagonal – having n − 1 entries), and c on the
subdiagonal (the diagonal immediately below the main diagonal –
having n− 1 entries). Show that Fn = aFn−1− bcFn−2, for n > 2.
What happens when a = b = 1 and c = −1?

12. Compute the n× n determinants:

(a)

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 a1 0 · · · 0
1 0 a2 · · · 0
...

...
...

. . .
...

1 0 0 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣

(b)

∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · 0
1 2 1 · · · 0
0 1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣∣∣∣

3 2 0 · · · 0
1 3 2 · · · 0
0 1 3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 3

∣∣∣∣∣∣∣∣∣∣∣

(d)

∣∣∣∣∣∣∣∣∣∣∣

a + b ab 0 · · · 0
1 a + b ab · · · 0
0 1 a + b · · · 0
...

...
...

. . .
...

0 0 0 · · · a + b

∣∣∣∣∣∣∣∣∣∣∣

13. (1992B5) Let Dn denote the value of the (n−1)×(n−1) determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 . . . 1
1 4 1 1 . . . 1
1 1 5 1 . . . 1
1 1 1 6 . . . 1
...

...
...

...
. . .

...
1 1 1 1 . . . n + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Is the set {Dn/n!}n≥2 bounded?
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Linear Operators and Matrices.

14. A matrix (mij) is circulant if the entry mij depends only on j−i modulo
n. Find the eigenvectors of a circulant n × n matrix. (Hint: Try the
case n = 2, and make a guess!)

15. For which values of n does there exist an n × n (real) matrix A such
that A2 = −In ? Here In denotes the n× n identity matrix.

16. For which values of n do there exist two n× n matrices A and B such
that AB −BA = In? Here again In is the n× n identity matrix.

17. (2005A4) Let H be an n × n matrix all of whose entries are ±1 and
whose rows are mutually orthogonal. Suppose H has an a×b submatrix
whose entries are all 1. Show that ab ≤ n.

18. Let n ≥ 1 and let A and B be n×n matrices such that the matrix (In−
AB) is invertible. Prove that the matrix (In − BA) is also invertible.
Again, In denotes the n× n identity matrix.

19. (1990A5) (modified) In this problem 0 denotes the zero matrix of
appropriate size.

(a) Let A and B be two 2 × 2 matrices such that ABAB = 0. Does
it follow that BABA = 0?

(b) Same question, if A and B are 3× 3 matrices.

(c) For what values of the integers n ≥ 1 and m ≥ 1 do there exist
n× n matrices A and B, such that (AB)m = 0, but (BA)m 6= 0?

20. (1994B4) For n ≥ 1, let dn be the greatest common divisor of the
entries of An − I, where

A =

(
3 2
4 3

)
and I =

(
1 0
0 1

)
.

Show that limn→∞ dn = ∞.

21. (1988A6) If a linear transformation A on an n-dimensional vector
space has n + 1 eigenvectors such that any n of them are linearly in-
dependent, does it follow that A is a scalar multiple of the identity?
Prove your answer.
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22. (1996B4) For any square matrix A, we can define sin A by the usual
power series:

sin A =
∞∑

n=0

(−1)n

(2n + 1)!
A2n+1.

Prove or disprove: there exists a 2× 2 matrix A with real entries such
that

sin A =

(
1 1996
0 1

)
.

23. (1987B5) Let On be the n-dimensional vector (0, 0, · · · , 0). Let M be a
2n×n matrix of complex numbers such that whenever (z1, z2, . . . , z2n)M =
On, with complex zi, not all zero, then at least one of the zi is not real.
Prove that for arbitrary real numbers r1, r2, . . . , r2n, there are complex
numbers w1, w2, . . . , wn such that

Re


M




w1
...

wn





 =




r1
...

r2n


 .

(Note: if C is a matrix of complex numbers, Re(C) is the matrix whose
entries are the real parts of the entries of C.)

24. (1986B6) Suppose A,B, C,D are n × n matrices with entries in a
field F , satisfying the conditions that ABt and CDt are symmetric and
ADt − BCt = I. Here I is the n × n identity matrix, and if M is an
n× n matrix, M t is its transpose. Prove that AtD − CtB = I.

25. (1985B6) Let G be a finite set of real n × n matrices {Mi}, 1 ≤
i ≤ r, which form a group under matrix multiplication. Suppose that∑r

i=1 tr(Mi) = 0, where tr(A) denotes the trace of the matrix A. Prove
that

∑r
i=1 Mi is the n× n zero matrix.
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