ELIZABETHTOWN COLLEGE
Putnam Preparation Series
B. Doytchinov, 2007

THEME 7

1. TOPICS

Complex numbers and Geometry.

2. PRACTICE PROBLEMS

Complex Numbers

1. If a, b, and n are positive integers, prove that there exist integers x and y such that

$$
\left(a^{2}+b^{2}\right)^{n}=x^{2}+y^{2}
$$

2. Show that

$$
\begin{aligned}
& \arctan 1+\arctan 2+\arctan 3=\pi \\
& \quad 4 \arctan \frac{1}{5}-\arctan \frac{1}{239}=\frac{\pi}{4}
\end{aligned}
$$

3. Evaluate each of the following expressions:

$$
\begin{gathered}
\binom{2001}{0}-\binom{2001}{2}+\binom{2001}{4}-\binom{2001}{6}+\cdots-\binom{2001}{1998}+\binom{2001}{2000} \\
\binom{2002}{0}+\binom{2002}{4}+\binom{2002}{8}+\cdots+\binom{2002}{2000} \\
1+\frac{1}{4!}+\frac{1}{7!}+\frac{1}{10!}+\frac{1}{13!}+\cdots
\end{gathered}
$$

4. Find constants $a_{0}, a_{1}, \ldots, a_{6}$ so that

$$
\cos ^{6} \theta=a_{6} \cos 6 \theta+a_{5} \cos 5 \theta+\cdots+a_{1} \cos \theta+a_{0}
$$

5. Express $\cos 5 \theta$ in terms of $\cos \theta$.
6. Let $\cos \theta=1 / \pi$. Evaluate

$$
\sum_{n=0}^{\infty} \frac{\cos (n \theta)}{2^{n}}
$$

7. For which ordered pairs (b, c) of real numbers do both roots of the quadratic equation $z^{2}+b z+c=0$ lie inside the unit disk $|z|<1$ in the complex plane? Draw a reasonably accurate graph of the region in the $b c$-plane for which this condition holds. Identify precisely the boundary curves of this region.
8. (1989A3) Prove that if

$$
11 z^{10}+10 i z^{9}+10 i z-11=0
$$

then $|z|=1$. (Here z is a complex number and $i^{2}=-1$.)
9. Let $f(z)=\left|z^{1000}-z^{5}+1\right|$, where z is a complex number on the unit circle. Find, with proof, the maximum and minimum values of $f(z)$.
10. For integer $n \geq 2$ show that

$$
\sin \frac{\pi}{n} \sin \frac{2 \pi}{n} \sin \frac{3 \pi}{n} \cdots \sin \frac{(n-1) \pi}{n}=\frac{n}{2^{n-1}} .
$$

11. For positive integer n define

$$
S_{n}=\binom{3 n}{0}+\binom{3 n}{3}+\binom{3 n}{6}+\cdots+\binom{3 n}{3 n} .
$$

Find a closed-form expression for S_{n}, and prove that

$$
\lim _{n \rightarrow \infty} \sqrt[3 n]{S_{n}}=2
$$

12. Let $n=2 m$ where m is an odd integer greater than 1 . Let $\theta=e^{2 \pi i / n}$. Find a finite list of integers $a_{0}, a_{1}, \ldots, a_{k}$ such that

$$
\frac{1}{1-\theta}=a_{k} \theta^{k}+a_{k-1} \theta^{k-1}+\cdots+a_{1} \theta+a_{0} .
$$

13. Let k be a positive integer, let $m=2^{k}+1$, and let $r \neq 1$ be a complex root of $z^{m}-1=0$. Prove that there exist polynomials $P(z)$ and $Q(z)$ with integer coefficients such that

$$
(P(r))^{2}+(Q(r))^{2}=-1
$$

14. (1987A1) Curves A, B, C, and D are defined in the plane as follows:

$$
\begin{aligned}
& A=\left\{(x, y): x^{2}-y^{2}=\frac{x}{x^{2}+y^{2}}\right\}, \\
& B=\left\{(x, y): 2 x y+\frac{y}{x^{2}+y^{2}}=3\right\}, \\
& C=\left\{(x, y): x^{3}-3 x y^{2}+3 y=1\right\}, \\
& D=\left\{(x, y): 3 x^{2} y-3 x-y^{3}=0\right\} .
\end{aligned}
$$

Prove that $A \cap B=C \cap D$.
15. (1991B2) Suppose f and g are nonconstant, differentiable, real-valued functions on \mathbb{R}. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y), \\
g(x+y) & =f(x) g(y)+g(x) f(y) .
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
16. (1985A5) Let

$$
I_{m}=\int_{0}^{2 \pi} \cos (x) \cos (2 x) \cdots \cos (m x) d x
$$

For which integers $m, 1 \leq m \leq 10$, is $I_{m} \neq 0$?
17. Let

$$
G_{n}=x^{n} \sin (n A)+y^{n} \sin (n B)+z^{n} \sin (n C),
$$

where x, y, z, A, B, C are real and $A+B+C$ is an integral multiple of π. Prove that if $G_{1}=G_{2}=0$, then $G_{n}=0$ for all positive integers n.

Complex Numbers in Geometry

18. In a triangle $A B C$ the points D, E, and F trisect the sides so that $B C=3 B D, C A=3 C E$, and $A B=3 A F$. Show that the triangles $A B C$ and $D E F$ have the same centroid.
19. Let C be a circle with center O, and Q a point inside C different from O. Show that the area enclosed by the locus of the centroid of triangle $O P Q$ as P moves about the circumference of C is idependent of Q.
20. Given a point P on the circumference of a unit circle and the vertices $A_{1}, A_{2}, \ldots, A_{n}$ of an inscribed regular polygon of n sides, prove that $\left|P A_{1}\right|^{2}+\left|P A_{2}\right|^{2}+\cdots+\left|P A_{n}\right|^{2}$ is constant.
21. (2004B4) Let n be a positive integer, $n \geq 2$, and put $\theta=2 \pi / n$. Define points $P_{k}=(k, 0)$ in the $x y$-plane, for $k=1,2, \ldots, n$. Let R_{k} be the map that rotates the plane counterclockwise by the angle θ about the point P_{k}. Let R denote the map obtained by applying, in order, R_{1}, then R_{2}, \ldots, then R_{n}. For an arbitrary point (x, y), find, and simplify, the coordinates of $R(x, y)$.
22. $A_{1}, A_{2}, \ldots, A_{n}$ are vertices of a regular polygon inscribed in a circle of radius R and center $O . P$ is a point on $O A_{1}$ extended beyond A_{1}. Show that

$$
\prod_{k=1}^{n}\left|P A_{k}\right|=|O P|^{n}-r^{n}
$$

23. A regular n-sided polygon is inscribed in a unit circle. Find the product of the lengths of all its sides and diagonals.
24. Prove that if the points in the complex plane corresponding to two distinct complex numbers z_{1} and z_{2} are two vertices of an equilateral triangle, then the third vertex corresponds to $-\omega z_{1}-\omega^{2} z_{2}$, where ω is a non-real cube root of unity.
25. Suppose $A B C D$ is a convex plane quadrilateral. Construct a square with side $A B$ outwards (i.e. not overlapping with the quadrilateral). Do the same with the other three sides. If L and M are the line segments joining the midpoints of opposite squares, show that L and M are perpendicular, and have the same length.

Other Problems in Geometry

26. (1998A2) Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be the area of the region lying below s and above the x-axis and let B be the area of the region lying to the right of the y-axis and to the left of s. Prove that $A+B$ depends only on the arc length, and not on the position, of s.
27. (1990A3) Prove that any convex pentagon whose vertices (no three of which are collinear) have integer coordinates must have area $\geq 5 / 2$.
28. (2004A2) For $i=1,2$ let T_{i} be a triangle with side lengths a_{i}, b_{i}, c_{i}, and area A_{i}. Suppose that $a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}$, and that T_{2} is an acute triangle. Does it follow that $A_{1} \leq A_{2}$?
29. (1994A3) Show that if the points of an isosceles right triangle of side length 1 are each colored with one of four colors, then there must be two points of the same color which are at least a distance $2-\sqrt{2}$ apart.
30. (1996A2) Let C_{1} and C_{2} be circles whose centers are 10 units apart, and whose radii are 1 and 3 . Find, with proof, the locus of all points M for which there exists points X on C_{1} and Y on C_{2} such that M is the midpoint of the line segment $X Y$.
31. (1997A1) A rectangle, $H O M F$, has sides $H O=11$ and $O M=5$. A triangle $A B C$ has H as the intersection of the altitudes, O the center of the circumscribed circle, M the midpoint of $B C$, and F the foot of the altitude from A. What is the length of $B C$?

32. (2000A5) Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1 / 3}$.
33. (1998A6) Let A, B, C denote distinct points with integer coordinates in \mathbb{R}^{2}. Prove that if

$$
(|A B|+|B C|)^{2}<8 \cdot[A B C]+1
$$

then A, B, C are three vertices of a square. Here $|X Y|$ is the length of segment $X Y$ and $[A B C]$ is the area of triangle $A B C$.
34. (2000A3) The octagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8}$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_{1} P_{3} P_{5} P_{7}$ is a square of area 5 , and the polygon $P_{2} P_{4} P_{6} P_{8}$ is a rectangle of area 4 , find the maximum possible area of the octagon.
35. (1997B6) The dissection of the 3-4-5 triangle shown below has diameter $5 / 2$.

Find the least diameter of a dissection of this triangle into four parts. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.)
36. (1999B1) Right triangle $A B C$ has right angle at C and $\angle B A C=\theta$; the point D is chosen on $A B$ so that $|A C|=|A D|=1$; the point E is chosen on $B C$ so that $\angle C D E=\theta$. The perpendicular to $B C$ at E meets $A B$ at F. Evaluate $\lim _{\theta \rightarrow 0}|E F|$. [Here $|P Q|$ denotes the length of the line segment $P Q$.]

37. (1989B5) Label the vertices of a trapezoid T (quadrilateral with two parallel sides) inscribed in the unit circle as A, B, C, D so that $A B$ is parallel to $C D$ and A, B, C, D are in counterclockwise order. Let s_{1}, s_{2}, and d denote the lengths of the line segments $A B, C D$, and $O E$, where E is the point of intersection of the diagonals of T, and O is the center of the circle. Determine the least upper bound of $\left(s_{1}-s_{2}\right) / d$ over all such T for which $d \neq 0$, and describe all cases, if any, in which it is attained.
38. (2001A4) Triangle $A B C$ has an area 1. Points E, F, G lie, respectively, on sides $B C, C A, A B$ such that $A E$ bisects $B F$ at point $R, B F$ bisects $C G$ at point S, and $C G$ bisects $A E$ at point T. Find the area of the triangle $R S T$.

