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1. TOPICS
Inequalities show up very often in different forms. Some of them are very

tricky, but most can be derived from simple principles.
Squares are nonnegative. The trivial inequality x2 ≥ 0 can be very

useful. We can derive from it, for positive a, b, c, x, y,

x + y

2
≥ √

xy,

or
a2 + b2 + c2 ≥ ab + bc + ca,

etc.
Convexity. Let f be a real-valued function defined on an interval I. The

function f is called convex if for every choice of x, y ∈ I and µ ∈ [0, 1],

f(µx + (1− µ)y) ≤ µf(x) + (1− µ)f(y).

This can be generalized to a greater number of points. If x1, x2, . . . , xn ∈ I
and t1, t2, . . . , tn are non-negative numbers such that t1 + t2 + · · · + tn = 1,
then

f(t1x1 + t2x2 + · · ·+ tnxn) ≤ t1f(x1) + t2f(x2) + · · ·+ tnf(xn).

Passing to a limit, we obtain the integral version

f

(∫

I

x p(x) dx

)
≤

∫

I

f(x)p(x) dx,

where p(x) ≥ 0 for x ∈ I and
∫

I
p(x) dx = 1.

The last two equations are particular cases of the Jensen’s inequality:

f (EX) ≤ Ef(X).

Looking at endpoints. If a function is linear or, more generally, convex,
it attains its maximum at an endpoint. Using this simple observation, we
can show, for example, that 0 ≤ x, y, z ≤ 1 implies

1 + xy + yz + zx ≥ x + y + z ≥ xy + yz + zx.
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Aritmetic, geometric, harmonic, and quadratic means. Let x1, x2, . . . , xn

be positive numbers. Define

A.M. =
x1 + x2 + · · ·+ xn

n
G.M. = n

√
x1x2 · · · xn

H.M. =
n

x−1
1 + x−1

2 + · · ·+ x−1
n

Q.M. =

√
x2

1 + x2
2 + · · ·+ x2

n

n

We have
H.M. ≤ G.M. ≤ A.M. ≤ Q.M.

In fact, all of the above inequalities are strict, unless x1 = x2 = · · · = xn.
More generally, it follows from Jensen’s inequality that, if p < q, then

(
xp

1 + xp
2 + · · ·+ xp

n

n

)1/p

≤
(

xq
1 + xq

2 + · · ·+ xq
n

n

)1/q

with equality only when x1 = x2 = · · · = xn.
The A.M.-H.M. inequality can be rewritten into the following “product”

form:

(x1 + x2 + · · ·+ xn)

(
1

x1

+
1

x2

+ · · ·+ 1

xn

)
≥ n2.

The Cauchy-Schwartz inequality. Let x1, x2, . . . , xn and y1, y2, . . . , yn

be real numbers. Then

∣∣∣∣∣
n∑

k=1

xkyk

∣∣∣∣∣ ≤
(

n∑

k=1

xk

)1/2 (
n∑

k=1

yk

)1/2

,

with equality only if the two vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are
proportional to each other.
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2. PRACTICE PROBLEMS

1. Let x1, x2, . . . , xn be real numbers. Show that

x2
1 + x2

2 + · · ·+ x2
n ≥

2

n− 1

∑
1≤i<j≤n

xixj.

2. For positive a, b, c prove that

b3c3 + c3a3 + a3b3 ≥ 3a2b2c2.

3. For positive x1, x2, . . . , xn prove that

x1

x2

+
x2

x3

+ · · ·+ xn−1

xn

+
xn

x1

≥ n.

4. If x ≤ y ≤ z and y > 0 prove that

x + z − y ≥ xz

y
.

5. For non-negative u1, u2, . . . , un prove that

(
n∑

i=1

ui

)3

≤ n2

n∑
i=1

u3
i .

6. Let

Hn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

Prove that

n( n
√

n + 1 − 1) ≤ Hn ≤ n− n− 1
n−1
√

n
.

7. If a, b, c are positive, show that

aabbcc ≥ (abc)(a+b+c)/3.

8. (2003A2) Let a1, a2, . . . , an, and b1, b2, . . . , bn, be non-negative real
numbers. Show that

(a1a2 . . . an)1/n + (b1b2 . . . bn)1/n ≤ ((a1 + b1)(a2 + b2) . . . (an + bn))1/n .
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9. Given n points on the unit sphere x2 + y2 + z2 = 1, prove that the sum
of the squares of distances between them is at most n2.

10. Prove that
1

2
· 3

4
· 5

6
· · · 999999

1000000
<

1

1000
.

11. Suppose x1, x2, . . . , xn are positive real numbers. Prove that

x1

x1 + x2

+
x2

x2 + x3

+ · · ·+ xn−1

xn−1 + xn

+
xn

xn + x1

≥ 1.

12. Suppose x1, x2, . . . , xn are positive real numbers. Prove that

x1

x2 + x3

+
x2

x3 + x4

+ · · ·+ xn−1

xn + x1

+
xn

x1 + x2

≥ n

4
.

13. Prove or disprove: If x and y are real numbers with y ≥ 0 and y(y+1) ≤
(x + 1)2, then y(y − 1) ≤ x2.

14. Let a, b, c, be positive real numbers, such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

15. (2002B3) Show that, for all integers n > 1,

1

2ne
<

1

e
−

(
1− 1

n

)n

<
1

ne
.

16. (1991A5) Find the maximum value of
∫ y

0

√
x4 + (y − y2)2 dx

for 0 ≤ y ≤ 1.

17. (1991B6) Let a and b be positive numbers. Find the largest number
c, in terms of a and b, such that

axb1−x ≤ a
sinh ux

sinh u
+ b

sinh u(1− x)

sinh u

for all u with 0 < |u| ≤ c and for all x, 0 < x < 1. (Note: sinh u =
(eu − e−u)/2.)
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18. (1996B3) Given that {x1, x2, . . . , xn} = {1, 2, . . . , n}, find, with proof,
the largest possible value, as a function of n (with n ≥ 2), of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

19. (1998A3) Let f be a real function on the real line with continuous
third derivative. Prove that there exists a point a such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0.

20. (1999B4) Let f be a real function with a continuous third derivative
such that f(x), f ′(x), f ′′(x), f ′′′(x) are positive for all x. Suppose that
f ′′′(x) ≤ f(x) for all x. Show that f ′(x) < 2f(x) for all x.

21. Let n be a natural number, and let xk ∈ [0, 1] for k = 1, 2, . . . , n. Find
the maximum of the sum

∑

k<j

|xk − xj|.

22. (1978A5) Let 0 < xi < π for i = 1, 2, . . . , n and set

x =
x1 + x2 + · · ·+ xn

n
.

Prove that
n∏

i=1

sin xi

xi

≤
(

sin x

x

)n

.

23. (1979B6) For k = 1, 2, . . . , n let zk = xk + iyk, where xk and yk are
real and i =

√−1. Let r be the absolute value of the real part of

±
√

z2
1 + z2

2 + · · ·+ z2
n.

Prove that r ≤ |x1|+ |x2|+ · · ·+ |xn|.
24. (1982B6) Let K(x, y, z) denote the area of a triangle whose sides have

lengths x, y, and z. For any two triangles with sides a, b and c, and a′,
b′, and c′ respectively, prove that

√
K(a, b, c) +

√
K(a′, b′, c)′ ≤

√
K(a + a′, b + b′, c + c′)

and determine the cases of equality.
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25. (2004A6) Suppose that f(x, y) is a continuous real-valued function on
the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Show that

∫ 1

0

(∫ 1

0

f(x, y)dx

)2

dy +

∫ 1

0

(∫ 1

0

f(x, y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0

f(x, y)dx dy

)2

+

∫ 1

0

∫ 1

0

(f(x, y))2 dx dy.
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