ELIZABETHTOWN COLLEGE

Putnam Preparation Series
B. Doytchinov, 2007

THEME 8

1. TOPICS

Inequalities show up very often in different forms. Some of them are very tricky, but most can be derived from simple principles.

Squares are nonnegative. The trivial inequality $x^{2} \geq 0$ can be very useful. We can derive from it, for positive a, b, c, x, y,

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

or

$$
a^{2}+b^{2}+c^{2} \geq a b+b c+c a
$$

etc.
Convexity. Let f be a real-valued function defined on an interval I. The function f is called convex if for every choice of $x, y \in I$ and $\mu \in[0,1]$,

$$
f(\mu x+(1-\mu) y) \leq \mu f(x)+(1-\mu) f(y)
$$

This can be generalized to a greater number of points. If $x_{1}, x_{2}, \ldots, x_{n} \in I$ and $t_{1}, t_{2}, \ldots, t_{n}$ are non-negative numbers such that $t_{1}+t_{2}+\cdots+t_{n}=1$, then

$$
f\left(t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{n} x_{n}\right) \leq t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)+\cdots+t_{n} f\left(x_{n}\right) .
$$

Passing to a limit, we obtain the integral version

$$
f\left(\int_{I} x p(x) d x\right) \leq \int_{I} f(x) p(x) d x
$$

where $p(x) \geq 0$ for $x \in I$ and $\int_{I} p(x) d x=1$.
The last two equations are particular cases of the Jensen's inequality:

$$
f(\mathbf{E} X) \leq \mathbf{E} f(X)
$$

Looking at endpoints. If a function is linear or, more generally, convex, it attains its maximum at an endpoint. Using this simple observation, we can show, for example, that $0 \leq x, y, z \leq 1$ implies

$$
1+x y+y z+z x \geq x+y+z \geq x y+y z+z x
$$

Aritmetic, geometric, harmonic, and quadratic means. Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive numbers. Define

$$
\begin{aligned}
\text { A.M. } & =\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \\
\text { G.M. } & =\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \\
\text { H.M. } & =\frac{n}{x_{1}^{-1}+x_{2}^{-1}+\cdots+x_{n}^{-1}} \\
\text { Q.M. } & =\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}}
\end{aligned}
$$

We have

$$
H . M . \leq G . M . \leq A . M . \leq Q . M
$$

In fact, all of the above inequalities are strict, unless $x_{1}=x_{2}=\cdots=x_{n}$.
More generally, it follows from Jensen's inequality that, if $p<q$, then

$$
\left(\frac{x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p}}{n}\right)^{1 / p} \leq\left(\frac{x_{1}^{q}+x_{2}^{q}+\cdots+x_{n}^{q}}{n}\right)^{1 / q}
$$

with equality only when $x_{1}=x_{2}=\cdots=x_{n}$.
The A.M.-H.M. inequality can be rewritten into the following "product" form:

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) \geq n^{2} .
$$

The Cauchy-Schwartz inequality. Let $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ be real numbers. Then

$$
\left|\sum_{k=1}^{n} x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{n} x_{k}\right)^{1 / 2}\left(\sum_{k=1}^{n} y_{k}\right)^{1 / 2}
$$

with equality only if the two vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are proportional to each other.

2. PRACTICE PROBLEMS

1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Show that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \geq \frac{2}{n-1} \sum_{1 \leq i<j \leq n} x_{i} x_{j} .
$$

2. For positive a, b, c prove that

$$
b^{3} c^{3}+c^{3} a^{3}+a^{3} b^{3} \geq 3 a^{2} b^{2} c^{2}
$$

3. For positive $x_{1}, x_{2}, \ldots, x_{n}$ prove that

$$
\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\cdots+\frac{x_{n-1}}{x_{n}}+\frac{x_{n}}{x_{1}} \geq n .
$$

4. If $x \leq y \leq z$ and $y>0$ prove that

$$
x+z-y \geq \frac{x z}{y} .
$$

5. For non-negative $u_{1}, u_{2}, \ldots, u_{n}$ prove that

$$
\left(\sum_{i=1}^{n} u_{i}\right)^{3} \leq n^{2} \sum_{i=1}^{n} u_{i}^{3}
$$

6. Let

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} .
$$

Prove that

$$
n(\sqrt[n]{n+1}-1) \leq H_{n} \leq n-\frac{n-1}{\sqrt[n-1]{n}}
$$

7. If a, b, c are positive, show that

$$
a^{a} b^{b} c^{c} \geq(a b c)^{(a+b+c) / 3}
$$

8. (2003A2) Let $a_{1}, a_{2}, \ldots, a_{n}$, and $b_{1}, b_{2}, \ldots, b_{n}$, be non-negative real numbers. Show that

$$
\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \ldots b_{n}\right)^{1 / n} \leq\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)\right)^{1 / n}
$$

9. Given n points on the unit sphere $x^{2}+y^{2}+z^{2}=1$, prove that the sum of the squares of distances between them is at most n^{2}.
10. Prove that

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{999999}{1000000}<\frac{1}{1000}
$$

11. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers. Prove that

$$
\frac{x_{1}}{x_{1}+x_{2}}+\frac{x_{2}}{x_{2}+x_{3}}+\cdots+\frac{x_{n-1}}{x_{n-1}+x_{n}}+\frac{x_{n}}{x_{n}+x_{1}} \geq 1 .
$$

12. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers. Prove that

$$
\frac{x_{1}}{x_{2}+x_{3}}+\frac{x_{2}}{x_{3}+x_{4}}+\cdots+\frac{x_{n-1}}{x_{n}+x_{1}}+\frac{x_{n}}{x_{1}+x_{2}} \geq \frac{n}{4} .
$$

13. Prove or disprove: If x and y are real numbers with $y \geq 0$ and $y(y+1) \leq$ $(x+1)^{2}$, then $y(y-1) \leq x^{2}$.
14. Let a, b, c, be positive real numbers, such that $a b c=1$. Prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

15. (2002B3) Show that, for all integers $n>1$,

$$
\frac{1}{2 n e}<\frac{1}{e}-\left(1-\frac{1}{n}\right)^{n}<\frac{1}{n e} .
$$

16. (1991A5) Find the maximum value of

$$
\int_{0}^{y} \sqrt{x^{4}+\left(y-y^{2}\right)^{2}} d x
$$

for $0 \leq y \leq 1$.
17. (1991B6) Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$
a^{x} b^{1-x} \leq a \frac{\sinh u x}{\sinh u}+b \frac{\sinh u(1-x)}{\sinh u}
$$

for all u with $0<|u| \leq c$ and for all $x, 0<x<1$. (Note: $\sinh u=$ $\left(e^{u}-e^{-u}\right) / 2$.)
18. (1996B3) Given that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{1,2, \ldots, n\}$, find, with proof, the largest possible value, as a function of n (with $n \geq 2$), of

$$
x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1} .
$$

19. (1998A3) Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

20. (1999B4) Let f be a real function with a continuous third derivative such that $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ are positive for all x. Suppose that $f^{\prime \prime \prime}(x) \leq f(x)$ for all x. Show that $f^{\prime}(x)<2 f(x)$ for all x.
21. Let n be a natural number, and let $x_{k} \in[0,1]$ for $k=1,2, \ldots, n$. Find the maximum of the sum

$$
\sum_{k<j}\left|x_{k}-x_{j}\right| .
$$

22. (1978A5) Let $0<x_{i}<\pi$ for $i=1,2, \ldots, n$ and set

$$
x=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} .
$$

Prove that

$$
\prod_{i=1}^{n} \frac{\sin x_{i}}{x_{i}} \leq\left(\frac{\sin x}{x}\right)^{n}
$$

23. (1979B6) For $k=1,2, \ldots, n$ let $z_{k}=x_{k}+i y_{k}$, where x_{k} and y_{k} are real and $i=\sqrt{-1}$. Let r be the absolute value of the real part of

$$
\pm \sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}}
$$

Prove that $r \leq\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$.
24. (1982B6) Let $K(x, y, z)$ denote the area of a triangle whose sides have lengths x, y, and z. For any two triangles with sides a, b and c, and a^{\prime}, b^{\prime}, and c^{\prime} respectively, prove that

$$
\sqrt{K(a, b, c)}+\sqrt{K\left(a^{\prime}, b^{\prime}, c\right)^{\prime}} \leq \sqrt{K\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}\right)}
$$

and determine the cases of equality.
25. (2004A6) Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. Show that

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
\leq & \left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}(f(x, y))^{2} d x d y
\end{aligned}
$$

