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THEME 9

1. TOPICS
Today we will talk about integer numbers, divisibility, and other questions

which typically go under the rubric of Number Theory. More precisely, we
will focus on the following topics:

1. divisibility, mod, primes, unique factorization

2. gcd, Euclid’s algorithm, relatively prime numbers

3. Fermat’s little theorem: ap ≡ a (mod p)

4. Wilson’s theorem: (p− 1)! ≡ 1 (mod p)

5. the Chinese remainder theorem

6. Euler’s φ function and primitive roots of n. If (a,m) = 1, then aφ(m) ≡
1 (mod m).

We will then turn our attention to polynomials. The ring of polynomials
shares many common properties with the ring of the integers, and a lot of
the theory carries over, with appropriate modifications. This is an example
of the general principle that “abstract” theory is sometimes very practical.

Motivated by this, we will discuss some problems from “Abstract” Algebra
at the end.

2. PRACTICE PROBLEMS
Number Theory

1. (1989A1) How many primes among the positive integers, written as
usual in base 10, are such that their digits are alternating 1’s and 0’s,
beginning and ending with 1?

2. Find integers x and y such that 754x + 221y = gcd(754, 221).
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3. (1986A2) What is the units (i.e., rightmost) digit of

⌊
1020000

10100 + 3

⌋
?

Here bxc is the greatest integer ≤ x.

4. Let a, b, c, and d be positive integers such that ad− bc = 1. Show that
the fractions a/c, b/d, and (a + b)/(c + d) are irreducible.

5. Show that (21n + 4)/(14n + 3) is irreducible for every natural number
n.

6. Prove that some positive multiple of 21 has 241 as its three final digits.

7. What are the last two digits of 31234?

8. (1985A4) Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1.
Which integers between 00 and 99 inclusive occur as the last two digits
in the decimal expansion of infinitely many ai?

9. (2000A2) Prove that there exist infinitely many integers n such that n,
n+1, n+2 are each the sum of the squares of two integers. [Example:
0 = 02 + 02, 1 = 02 + 12, and 2 = 12 + 12.]

10. Let a and b be relatively prime, i.e. gcd(a, b) = 1. Prove the following:

(a) gcd(a + b, a− b) ≤ 2

(b) gcd(a + b, a− b, ab) = 1

(c) gcd(a2 − ab + b2, a + b) ≤ 3

11. (2002B5) A palindrome in base b is a positive integer whose base-b
digits read the same backwards and forwards; for example, 2002 is a
4-digit palindrome in base 10. Note that 200 is not a palindrome in
base 10, but it is the 3-digit palindrome 242 in base 9, and 404 in base
7. Prove that there is an integer which is a 3-digit palindrome in base
b for at least 2002 different values of b.

12. (2001A5) Prove that there are unique positive integers a, n such that
an+1 − (a + 1)n = 2001.
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13. (2000B2) Prove that the expression

gcd(m,n)

n

(
n

m

)

is an integer for all pairs of integers n ≥ m ≥ 1.

14. (a) Show that a perfect square must leave a remainder of 0, 1, or 4
upon division by 8. Show that it can’t leave a remainder of 2 upon
division by 3.

(b) Find all pairs of integers x and y such that x2 + y2 = 1999.

(c) With a minimum of effort, find all pairs of integers x and y such
that x2 + y2 = 1000.

15. (2000B5) Let S0 be a finite set of positive integers. We define finite
sets S1, S2, . . . of positive integers as follows: the integer a is in Sn+1 if
and only if exactly one of a − 1 or a is in Sn. Show that there exist
infinitely many integers N for which SN = S0 ∪ {N + a : a ∈ S0}.

16. (1999A6) The sequence (an)n≥1 is defined by a1 = 1, a2 = 2, a3 = 24,
and, for n ≥ 4,

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3

.

Show that, for all n, an is an integer multiple of n.

17. (1999B6) Let S be a finite set of integers, each greater than 1. Suppose
that for each integer n there is some s ∈ S such that gcd(s, n) = 1 or
gcd(s, n) = s. Show that there exist s, t ∈ S such that gcd(s, t) is
prime.

18. (1998A4) Let A1 = 0 and A2 = 1. For n > 2, the number An is
defined by concatenating the decimal expansions of An−1 and An−2

from left to right. For example A3 = A2A1 = 10, A4 = A3A2 = 101,
A5 = A4A3 = 10110, and so forth. Determine all n such that 11 divides
An.

19. (1970A3) Find the length of the longest sequence of equal nonzero
digits in which an integral square can terminate (in base 10) and find
the smallest square which terminates in such a sequence.
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20. (1995A3) The number d1d2 . . . d9 has nine (not necessarily distinct)
decimal digits. The number e1e2 . . . e9 is such that each of the nine 9-
digit numbers formed by replacing just one of the digits di is d1d2 . . . d9

by the corresponding digit ei (1 ≤ i ≤ 9) is divisible by 7. The number
f1f2 . . . f9 is related to e1e2 . . . e9 is the same way: that is, each of the
nine numbers formed by replacing one of the ei by the corresponding
fi is divisible by 7. Show that, for each i, di − fi is divisible by 7.
[For example, if d1d2 . . . d9 = 199501996, then e6 may be 2 or 9, since
199502996 and 199509996 are multiples of 7.]

21. (1998B6) Prove that, for any integers a, b, c, there exists a positive
integer n such that

√
n3 + an2 + bn + c is not an integer.

22. (1993B5) Show there do not exist four points in the Euclidean plane
such that the pairwise distances between the points are all odd integers.

23. (1991B3) Does there exist a real number L such that, if m and n are
integers greater than L, then an m×n rectangle may be expressed as a
union of 4× 6 and 5× 7 rectangles, any two of which intersect at most
along their boundaries?

24. (1991B5) Let p be an odd prime and let Zp denote (the field of)
integers modulo p. How many elements are in the set

{x2 : x ∈ Zp} ∩ {y2 + 1 : y ∈ Zp}?

25. (1972A1) Show that there are no four consecutive binomial coefficients

(
n

r

)
,

(
n

r + 1

)
,

(
n

r + 2

)
,

(
n

r + 3

)

(n and r are positive integers, and r + 3 ≤ n) which are in arithmetic
progression.

26. (1969B1) Let n be a positive integer such that n + 1 is divisible by
24. Prove that the sum of the divisors of n is divisible by 24.

27. (1982A5) Let a, b, c, and d be positive integers and r = 1−a/b− c/d.
Given that a + c ≤ 1982 and r > 0, prove that r > 1/19833.
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28. (1972A5) Show that if n is an integer greater than 1, then n does not
divide 2n − 1.

29. (1997B5) Prove that for n ≥ 2,

n times︷︸︸︷
22···

2

≡
n− 1 times︷︸︸︷
22···

2

(mod n).

30. (1992A3) For a given positive integer m, find all triples (n, x, y) of
positive integers, with n relatively prime to m, which satisfy

(x2 + y2)m = (xy)n.

31. (1975A1) Supposing that an integer n is the sum of two triangular
numbers n = (a2 + a)/2 + (b2 + b)/2, write 4n + 1 as the sum of two
squares, 4n + 1 = x2 + y2 , and show how x and y can be expressed
in terms of a and b. Show that, conversely, if 4n + 1 = x2 + y2, then
n is the sum of two triangular numbers. (Of course, a, b, x, y are
understood to be integers.)

32. (1983A3) Let p be an odd prime, and let

F (n) = 1 + 2n + 3n2 + · · ·+ (p− 1)np−2.

Prove that if a and b are distinct integers in {0, 1, . . . , p − 1} then
F (a) and F (b) are not congruent modulo p, that is, F (a)−F (b) is not
divisible by p.

33. (1994B6) For any integer a, set

na = 101a− 100 · 2a.

Show that for 0 ≤ a, b, c, d ≤ 99, na + nb ≡ nc + nd(mod10100) implies
{a, b} = {c, d}.

Polynomials

34. (2000A6) Let f(x) be a polynomial with integer coefficients. Define a
sequence a0, a1, . . . of integers such that a0 = 0 and an+1 = f(an) for all
n ≥ 0. Prove that if there exists a positive integer m for which am = 0
then either a1 = 0 or a2 = 0.

5



35. (2004B1) Let P (x) = cnx
n + cn−1x

n−1 + · · · + c0 be a polynomial
with integer coefficients. Suppose that r is a rational number such that
P (r) = 0. Show that the n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r
2 + cn−2r, . . . , cnrn + cn−1r

n−1 + · · ·+ c1r

are integers.

36. (2001A3) For each integer m, consider the polynomial

Pm(x) = x4 − (2m + 4)x2 + (m− 2)2.

For what values of m is Pm(x) the product of two non-constant poly-
nomials with integer coefficients?

37. (1999B2) Let P (x) be a polynomial of degree n such that P (x) =
Q(x)P ′′(x), where Q(x) is a quadratic polynomial and P ′′(x) is the
second derivative of P (x). Show that if P (x) has at least two distinct
roots then it must have n distinct roots. [The roots may be either real
or complex.]

38. (1991A3) Find all real polynomials p(x) of degree n ≥ 2 for which
there exist real numbers r1 < r2 < · · · < rn such that

(i) p(ri) = 0, i = 1, 2, . . . , n, and

(ii) p′
( ri+ri+1

2

)
= 0, i = 1, 2, . . . , n− 1,

where p′(x) denotes the derivative of p(x).

39. (2003B4) Let

f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4)

where a, b, c, d, e are integers, a 6= 0. Show that if r1 + r2 is a rational
number, and if r1 + r2 6= r3 + r4, then r1r2 is a rational number.

40. (1986B3) Let Γ consist of all polynomials in x with integer coefficients.
For f and g in Γ and m a positive integer, let f ≡ g (mod m) mean that
every coefficient of f − g is an integral multiple of m. Let n and p be
positive integers with p prime. Given that f , g, h, r, and s are in Γ with
rf + sg ≡ 1 (mod p) and fg ≡ h (mod p), prove that there exist F and
G in Γ with F ≡ f (mod p), G ≡ g (mod p), and FG ≡ h (mod pn).

6



41. (1986B5) Let f(x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z),
r(x, y, z) be polynomials with real coefficients satisfying

f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some
permutation of ±x,±y,±z, where the number of minus signs is 0 or 2.

42. (1985B1) Let k be the smallest positive integer with the following
property:

There are distinct integers m1, m2, m3, m4, m5 such that the
polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients.

Find, with proof, a set of integers m1, m2, m3, m4, m5 for which this
minimum k is achieved.

43. (2004A4) Show that for any positive integer n, there is an integer N
such that the product x1x2 · · · xn can be expressed identically in the
form

x1x2 · · ·xn =
N∑

i=1

ci(ai1x1 + ai2x2 + · · ·+ ainxn)n

where the ci are rational numbers and each aij is one of the numbers
−1, 0, 1.

44. (1992B4) Let p(x) be a nonzero polynomial of degree less than 1992
having no nonconstant factor in common with x3 − x. Let

d1992

dx1992

(
p(x)

x3 − x

)
=

f(x)

g(x)

for polynomials f(x) and g(x). Find the smallest possible degree of
f(x).

45. (1994A4) Let A and B be 2 × 2 matrices with integer entries such
that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices
whose inverses have integer entries. Show that A+5B is invertible and
that its inverse has integer entries.

7



46. (1987A4) Let P be a polynomial, with real coefficients, in three vari-
ables and F be a function of two variables such that

P (ux, uy, uz) = u2F (y − x, z − x) for all real x, y, z, u,

and such that P (1, 0, 0) = 4, P (0, 1, 0) = 5, and P (0, 0, 1) = 6. Also let
A,B,C be complex numbers with P (A,B,C) = 0 and |B − A| = 10.
Find |C − A|.

47. (1985A6) If p(x) = a0 + a1x + · · · + amxm is a polynomial with real
coefficients ai, then set

Γ(p(x)) = a2
0 + a2

1 + · · ·+ a2
m.

Let f(x) = 3x2 +7x+2. Find, with proof, a polynomial g(x) with real
coefficients such that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n)

for every integer n ≥ 1.

Abstract Algebra

48. (1989B2) Let S be a nonempty set with an associative operation that
is left and right cancellative (xy = xz implies y = z, and yx = zx
implies y = z). Assume that for every a in S the set {an : n =
1, 2, 3, . . .} is finite. Must S be a group?

49. (2001A1) Consider a set S and a binary operation ∗, i.e., for each
a, b ∈ S, a ∗ b ∈ S. Assume (a ∗ b) ∗ a = b for all a, b ∈ S. Prove that
a ∗ (b ∗ a) = b for all a, b ∈ S.

50. (1984B3) Prove or disprove the following statement:
If F is a finite set with two or more elements, then there exists a binary
operation ∗ on F such that for all x, y, and z in F ,

(a) x ∗ z = y ∗ z implies x = y and

(b) x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.
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51. (1987B6) Let F be the field of p2 elements where p is an odd prime.
Suppose S is a set of (p2 − 1)/2 distinct nonzero elements of F with
the property that for each a 6= 0 in F , exactly one of a and −a is in S.
Let N be the number of elements in the intersection S ∩ {2a : a ∈ S}.
Prove that N is even.

52. (1997A4) Let G be a group with identity e and φ : G → G a function
such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element
a ∈ G such that ψ(x) = aφ(x) is a homomorphism (that is, ψ(xy) =
ψ(x)ψ(y) for all x, y ∈ G).
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