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THEME 10

1. TOPICS
Today we will look at various problems from Real Analysis and Calculus.

2. PRACTICE PROBLEMS
Real Analysis

1. (1999A5) Prove that there is a constant C such that, if p(x) is a
polynomial of degree 1999, then

|p(0)| ≤ C

∫ 1

−1

|p(x)| dx.

2. (1990B5) Is there an infinite sequence a0, a1, a2, . . . of nonzero real
numbers such that for n = 1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

has exactly n distinct real roots?

3. (1989B4) Can a countably infinite set have an uncountable collection
of nonempty subsets such that the intersection of any two of them is
finite?

4. (1990A4) Consider a paper punch that can be centered at any point
of the plane and that, when operated, removes from the plane precisely
those points whose distance from the center is irrational. How many
punches are needed to remove every point?

5. (1990A2) Is
√

2 the limit of a sequence of numbers of the form

3
√

n− 3
√

m

(n,m = 0, 1, 2, . . .)?
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6. (1998A5) Let F be a finite collection of open discs in IR2 whose union
contains a set E ⊆ IR2. Show that there is a pairwise disjoint subcol-
lection D1, . . . , Dn in F such that

E ⊆ ∪n
j=13Dj.

Here, if D is the disc of radius r and center P , then 3D is the disc of
radius 3r and center P .

7. (1995B6) For a positive real number α, define

S(α) = {bnαc : n = 1, 2, 3, . . .}.

Prove that {1, 2, 3, . . .} cannot be expressed as the disjoint union of
three sets S(α), S(β) and S(γ).

8. (1994A5) Let (rn)n≥0 be a sequence of positive real numbers such that
limn→∞ rn = 0. Let S be the set of numbers representable as a sum

ri1 + ri2 + · · ·+ ri1994

with i1 < i2 < · · · < i1994. Show that every nonempty interval (a, b)
contains a nonempty subinterval (c, d) that does not intersect S.

9. (1986B4) For a positive real number r, let G(r) be the minimum
value of |r − √m2 + 2n2| for all integers m and n. Prove or disprove
the assertion that limr→∞ G(r) exists and equals 0.

10. (1992A4) Let f be an infinitely differentiable real-valued function de-
fined on the real numbers. If

f

(
1

n

)
=

n2

n2 + 1
, n = 1, 2, 3, . . . ,

compute the values of the derivatives f (k)(0), k = 1, 2, 3, . . ..

11. Compute the limit:

lim
x→0

sin tan x− tan sin x

arcsin arctan x− arctan arcsin x
.
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Calculus

12. Is it possible to represent the function sin x as the difference of two
convex functions?

13. (2006A1) Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

14. (1989A2) Evaluate

∫ a

0

∫ b

0

emax{b2x2,a2y2} dy dx where a and b are pos-

itive.

15. (1985B5) Evaluate
∫∞
0

t−1/2e−1985(t+t−1) dt. You may assume that∫∞
−∞ e−x2

dx =
√

π.

16. (2000A4) Show that the improper integral

lim
B→∞

∫ B

0

sin(x) sin(x2) dx

converges.

17. (1995A2) For what pairs (a, b) of positive real numbers does the im-
proper integral

∫ ∞

b

(√√
x + a−√x−

√√
x−

√
x− b

)
dx

converge?

18. (2001A6) Can an arc of a parabola inside a circle of radius 1 have a
length greater than 4?

19. (1998B3) Let H be the unit hemisphere {(x, y, z) : x2 + y2 + z2 =
1, z ≥ 0}, C the unit circle {(x, y, 0) : x2 + y2 = 1}, and P the regular
pentagon inscribed in C. Determine the surface area of that portion of
H lying over the planar region inside P , and write your answer in the
form A sin α + B cos β, where A, B, α, β are real numbers.
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20. (1991A4) Does there exist an infinite sequence of closed discs D1, D2,
D3, . . . in the plane, with centers c1, c2, c3, . . ., respectively, such that

(i) the ci have no limit point in the finite plane,

(ii) the sum of the areas of the Di is finite, and

(iii) every line in the plane intersects at least one of the Di?

21. (1996B2) Show that for every positive integer n,

(
2n− 1

e

) 2n−1
2

< 1 · 3 · 5 · · · (2n− 1) <

(
2n + 1

e

) 2n+1
2

.

22. (1994B2) For which real numbers c is there a straight line that inter-
sects the curve

y = x4 + 9x3 + cx2 + 9x + 4

in four distinct points?

23. (1984A5) Let R be the region consisting of all triples (x, y, z) of non-
negative real numbers satisfying x + y + z ≤ 1. Let w = 1− x− y− z.
Express the value of the integral

∫ ∫ ∫

R

x1y9z8w4 dx dy dz

in the form a!b!c!d!/n! where a, b, c, d, and n are positive integers.

24. (1994B3) Find the set of all real numbers k with the following prop-
erty: For any positive, differentiable function f that satisfies f ′(x) >
f(x) for all x, there is some number N such that f(x) > ekx for all
x > N .

25. (2004B3) Determine all real numbers a > 0 for which there exists a
nonnegative continuous function f(x) defined on [0, a] with the prop-
erty that the region

R = {(x, y); 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)}

has perimeter k units and area k square units for some real number k.
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26. (2002A6) Fix an integer b ≥ 2. Let f(1) = 1, f(2) = 2, and for each
n ≥ 3, define f(n) = nf(d), where d is the number of base-b digits of
n. For which values of b does

∞∑
n=1

1

f(n)

converge?

27. (2004B5) Evaluate

lim
x→1−

∞∏
n=0

(
1 + xn+1

1 + xn

)xn

.

28. Compute the integrals:

(a)

∫ ∞

0

2 sin x− sin 2x

x2
dx (b)

∫ ∞

0

arctan πx− arctan x

x
dx.

(c)

∫ 1

0

arcsin x3 − arcsin x2

x ln x
dx

29. (1987A5) Let

~G(x, y) =

( −y

x2 + 4y2
,

x

x2 + 4y2
, 0

)
.

Prove or disprove that there is a vector-valued function

~F (x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z))

with the following properties:

(i) M, N, P have continuous partial derivatives for all (x, y, z) 6= (0, 0, 0);

(ii) Curl ~F = ~0 for all (x, y, z) 6= (0, 0, 0);

(iii) ~F (x, y, 0) = ~G(x, y).
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30. (1986A5) Suppose f1(x), f2(x), . . . , fn(x) are functions of n real vari-
ables x = (x1, . . . , xn) with continuous second-order partial derivatives
everywhere on IRn. Suppose further that there are constants cij such
that

∂fi

∂xj

− ∂fj

∂xi

= cij

for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Prove that there is a function
g(x) on IRn such that fi + ∂g/∂xi is linear for all i, 1 ≤ i ≤ n. (A
linear function is one of the form

a0 + a1x1 + a2x2 + · · ·+ anxn.)

31. (2003A3) Find the minimum value of

| sin x + cos x + tan x + cot x + sec x + csc x|

for real numbers x.

Differential Equations

32. (1988A2) A not uncommon calculus mistake is to believe that the
product rule for derivatives says that (fg)′ = f ′g′. If f(x) = ex2

,
determine, with proof, whether there exists an open interval (a, b) and
a nonzero function g defined on (a, b) such that this wrong product rule
is true for x in (a, b).

33. (1995A5) Let x1, x2, . . . , xn be differentiable (real-valued) functions of
a single variable t which satisfy

dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn

...
dxn

dt
= an1x1 + an2x2 + · · ·+ annxn

for some constants aij > 0. Suppose that for all i, xi(t) → 0 as t →∞.
Are the functions x1, x2, . . . , xn necessarily linearly dependent?
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34. (1989B3) Let f be a function on [0,∞), differentiable and satisfying

f ′(x) = −3f(x) + 6f(2x)

for x > 0. Assume that |f(x)| ≤ e−
√

x for x ≥ 0 (so that f(x) tends
rapidly to 0 as x increases). For n a nonnegative integer, define

µn =

∫ ∞

0

xnf(x) dx

(sometimes called the nth moment of f).

a. Express µn in terms of µ0.

b. Prove that the sequence {µn3n/n!} always converges, and that the
limit is 0 only if µ0 = 0.

35. (1997B2) Let f be a twice-differentiable real-valued function satisfying

f(x) + f ′′(x) = −xg(x)f ′(x),

where g(x) ≥ 0 for all real x. Prove that |f(x)| is bounded.

36. (1987A3) For all real x, the real-valued function y = f(x) satisfies

y′′ − 2y′ + y = 2ex.

(a) If f(x) > 0 for all real x, must f ′(x) > 0 for all real x? Explain.

(b) If f ′(x) > 0 for all real x, must f(x) > 0 for all real x? Explain.

37. (1990B1) Find all real-valued continuously differentiable functions f
on the real line such that for all x,

(f(x))2 =

∫ x

0

[(f(t))2 + (f ′(t))2] dt + 1990.
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Functional Equations

38. Suppose f : IR → IR is a continuous function such that f(x + y) =
f(x) + f(y). Show that f(x) = cx for some c ∈ IR.

39. Let f : IN × IN → IN be a function satisfying:

(a) f(x, y) = f(y, x)

(b) f(x, x) = x

(c) if y > x, then f(x, y) = f(x, y − x).

What is the function f?

40. (IMO1968) Let f : IR → IR satisfy the functional equation

f(x + a) = 1/2 +
√

f(x)− f(x)2

for some fixed a > 0. Prove that f is periodic, and give an example of
a nonconstant f satisfying the equation for a = 1.

41. (1992A1) Prove that f(n) = 1− n is the only integer-valued function
defined on the integers that satisfies the following conditions:

(i) f(f(n)) = n, for all integers n;

(ii) f(f(n + 2) + 2) = n for all integers n;

(iii) f(0) = 1.

42. (2000B4) Let f(x) be a continuous function such that f(2x2 − 1) =
2xf(x) for all x. Show that f(x) = 0 for −1 ≤ x ≤ 1.

43. (1996A6) Let c ≥ 0 be a constant. Give a complete description, with
proof, of the set of all continuous functions f : IR → IR such that
f(x) = f(x2 + c) for all x ∈ IR.

44. (1988A5) Prove that there exists a unique function f from the set IR+

of positive real numbers to IR+ such that

f(f(x)) = 6x− f(x) and f(x) > 0 for all x > 0.
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45. (2001B5) Let a and b be real numbers in the interval (0, 1/2), and let
g be a continuous real-valued function such that g(g(x)) = ag(x) + bx
for all real x. Prove that g(x) = cx for some constant c.

46. (1993B4) The function K(x, y) is positive and continuous for 0 ≤
x ≤ 1, 0 ≤ y ≤ 1, and the functions f(x) and g(x) are positive and
continuous for 0 ≤ x ≤ 1. Suppose that for all x, 0 ≤ x ≤ 1,

∫ 1

0

f(y)K(x, y) dy = g(x) and

∫ 1

0

g(y)K(x, y) dy = f(x).

Show that f(x) = g(x) for 0 ≤ x ≤ 1.

47. (1991B2) Suppose f and g are non-constant, differentiable, real-valued
functions on IR. Furthermore, suppose that for each pair of real num-
bers x and y,

f(x + y) = f(x)f(y)− g(x)g(y),

g(x + y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, prove that (f(x))2 + (g(x))2 = 1 for all x.

48. (JapMO2004) Find all functions f : IR → IR such that for every two
real numbers x and y:

f (x f(x) + f(y)) = f(x)2 + y.
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