Dept. of Math. Sci., WPI

MA 1034 Analysis 4
Bogdan Doytchinov, Term D01

Homework Assignment 1

Solutions

1. Find an equation of a sphere that has a center at the point $(5,3,-6)$ and touches the $y z$-plane.
Solution. The radius connecting the center of the sphere and the point where it touches the $y z$-plane is perpendicular to the $y z$-plane. In other words, the point A where the sphere touches the $y z$-plane is the orthogonal projection of the center $C(5,3,-6)$ onto the $y z$-plane. This means that A has coordinates $(0,3,-6)$. The radius is $r=\|\overrightarrow{C A}\|=5$. The equation of the sphere is then

$$
(x-5)^{2}+(y-3)^{2}+(z+6)^{2}=25
$$

2. Find the equation of the sphere with a diameter determined by its endpoints, $(1,-2,7)$ and $(9,0,1)$.
Solution. The length of the diameter is

$$
\sqrt{(1-9)^{2}+(-2-0)^{2}+(7-1)^{2}}=\sqrt{104}=2 \sqrt{26}
$$

The radius is then $r=\sqrt{26}$. The center is the midpoint of the line segment with endpoints $(1,-2,7)$ and $(9,0,1)$, i.e. the center has coordinates

$$
\left(\frac{1+9}{2}, \frac{-2+0}{2}, \frac{7+1}{2}\right)=(5,-1,4)
$$

Putting this information together, we get the equation

$$
(x-5)^{2}+(y+1)^{2}+(z-4)^{2}=26
$$

3. Find the center and the radius of a sphere with an equation

$$
2 x^{2}+2 y^{2}+2 z^{2}+4 y-2 z=1
$$

Solution. We rearrange the terms and complete the squares:

$$
\begin{aligned}
2 x^{2}+2 y^{2}+2 z^{2}+4 y-2 z & =1 \\
x^{2}+y^{2}+z^{2}+2 y-z & =\frac{1}{2} \\
x^{2}+\left(y^{2}+2 y\right)+\left(z^{2}-z\right) & =\frac{1}{2} \\
x^{2}+(y+1)^{2}+\left(z-\frac{1}{2}\right)^{2} & =\frac{1}{2}+1^{2}+\left(\frac{1}{2}\right)^{2} \\
x^{2}+(y+1)^{2}+\left(z-\frac{1}{2}\right)^{2} & =\frac{7}{4}
\end{aligned}
$$

Which gives us the center $\left(0,-1, \frac{1}{2}\right)$ and radius $\frac{\sqrt{7}}{2}$
4. Two spheres with equations

$$
x^{2}+y^{2}+z^{2}-4 x-2 y-6 z+12=0
$$

and

$$
x^{2}+y^{2}+z^{2}-2 x+2 y-10 z+24=0
$$

respectively, intersect. Their intersection is a circle in \mathbb{R}^{3}. Find the center and the radius of this cirle.
Solution. As in the previous problem, we rewrite the equations in a form which gives us the centers and radii:

$$
(x-2)^{2}+(y-1)^{2}+(z-3)^{2}=2
$$

and

$$
(x-1)^{2}+(y+1)^{2}+(z-5)^{2}=3 .
$$

The first sphere has a center $A(2,1,3)$ and radius $\sqrt{2}$. The second sphere has a center $B(1,-1,5)$ and radius $\sqrt{3}$. Let C be a point on the intersection of the two spheres. Then $|A B|=\sqrt{1^{2}+2^{2}+2^{2}}=3,|A C|=\sqrt{2}$, and $|B C|=\sqrt{3}$. Since three points always lie in a plane, we can put A, B, and C on a planar picture as follows:

Let O be the orthogonal projection of C onto $A B$. Then O is the center of the circle and $|O C|$ is its radius. Denoting $|A O|=u,|O B|=v,|O C|=r$, we get

$$
\begin{aligned}
u+v & =3 \\
u^{2}+r^{2} & =2 \\
v^{2}+r^{2} & =3
\end{aligned}
$$

Solving this system, we get $r=\sqrt{2} / 3, u=4 / 3$, and $v=5 / 3$. Thus, the radius of the circle is $r=\sqrt{2} / 3$, and the center is the point O which divides the line segment $A B$ into a ratio 4:5. Therefore the center O has coordinates

$$
\frac{5}{9}(2,1,3)+\frac{4}{9}(1,-1,5)=\left(\frac{14}{9}, \frac{1}{9}, \frac{35}{9}\right) .
$$

5. Write the vector $\vec{u}=\langle 1,0,-2\rangle$ as a linear combination of the three vectors $\langle 1,1,0\rangle$, $\langle-1,1,-2\rangle$, and $\langle 0,1,-2\rangle$.
Solution. We are looking for real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$, such that

$$
\langle 1,0,-2\rangle=\lambda_{1}\langle 1,1,0\rangle+\lambda_{2}\langle-1,1,-2\rangle+\lambda_{3}\langle 0,1,-2\rangle,
$$

or, in components,

$$
\begin{aligned}
\lambda_{1}-\lambda_{2} & =1 \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & =0 \\
-2 \lambda_{2}-2 \lambda_{3} & =-2
\end{aligned}
$$

Solving this linear system, we get $\lambda_{1}=-1, \lambda_{2}=-2, \lambda_{3}=3$, so

$$
\vec{u}=\langle 1,0,-2\rangle=-\langle 1,1,0\rangle-2\langle-1,1,-2\rangle+3\langle 0,1,-2\rangle .
$$

6. Let $\|\vec{a}+\vec{b}\|=\|\vec{a}-\vec{b}\|$. Find the angle between \vec{a} and \vec{b}.

Solution. We have:

$$
\begin{aligned}
\|\vec{a}+\vec{b}\| & =\|\vec{a}-\vec{b}\| \\
\|\vec{a}+\vec{b}\|^{2} & =\|\vec{a}-\vec{b}\|^{2} \\
(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) & =(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
\|\vec{a}\|^{2}+\|\vec{b}\|^{2}+2 \vec{a} \cdot \vec{b} & =\|\vec{a}\|^{2}+\|\vec{b}\|^{2}-2 \vec{a} \cdot \vec{b} \\
4 \vec{a} \cdot \vec{b} & =0 \\
\vec{a} \cdot \vec{b} & =0
\end{aligned}
$$

i.e., \vec{a} and \vec{b} are perpendicular.
7. The Paralleloram Law states that

$$
\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2}=2\|\vec{a}\|^{2}+2\|\vec{b}\|^{2} .
$$

Give a geometric interpretation of this law. Prove it.
Solution. Let $A B C D$ be a parallelogram and denote $\overrightarrow{A B}=\vec{a}, \overrightarrow{A D}=\vec{b}$. Then $\overrightarrow{D C}=\vec{a}$, $\overrightarrow{B C}=\vec{b}, \overrightarrow{A C}=\vec{a}+\vec{b}, \overrightarrow{D B}=\vec{a}-\vec{b}$. The parallelogram law states that

$$
|A C|^{2}+|B D|^{2}=|A B|^{2}+|B C|^{2}+|C D|^{2}+|A D|^{2}
$$

i.e. the sum of the squares of the diagonals in a parallelogram is equal to the sum of the squares of the sides.
To prove the equality, observe that

$$
\begin{aligned}
\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2} & =(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})+(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
& =\|\vec{a}\|^{2}+\|\vec{b}\|^{2}+2 \vec{a} \cdot \vec{b}+\|\vec{a}\|^{2}+\|\vec{b}\|^{2}-2 \vec{a} \cdot \vec{b} \\
& =2\|\vec{a}\|^{2}+2\|\vec{b}\|^{2} .
\end{aligned}
$$

8. If $\|\vec{a}\|=\|\vec{a}-\vec{b}\|$, show that $\vec{a} \cdot \vec{b}=(\vec{b}-\vec{a}) \cdot \vec{b}$.

Solution.

$$
\begin{aligned}
\|\vec{a}\|^{2} & =\|\vec{a}-\vec{b}\| \\
\|\vec{a}\|^{2} & =\|\vec{a}-\vec{b}\|^{2} \\
\|\vec{a}\|^{2} & =(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b}) \\
\|\vec{a}\|^{2} & =\|\vec{a}\|^{2}+\|\vec{b}\|^{2}-2 \vec{a} \cdot \vec{b} \\
0 & =\vec{b} \cdot \vec{b}-2 \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{b}-\vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & =(\vec{b}-\vec{a}) \cdot \vec{b}
\end{aligned}
$$

9. If $\vec{c}=\|\vec{a}\| \vec{b}+\|\vec{b}\| \vec{a}$, where \vec{a}, \vec{b}, and \vec{c} are all nonzero vectors, show that \vec{c} bisects the angle between \vec{a} and \vec{b}.
Solution. Since \vec{c} is a linear combination ov \vec{a} and \vec{b}, it lies in the same plane as \vec{a} and \vec{b}. It suffices to show that the angle between \vec{a} and \vec{c} is the same as the angle between \vec{b} and \vec{c}.
The cosine of the angle between \vec{a} and \vec{c} is

$$
\frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\|\|\vec{c}\|}=\frac{\|\vec{a}\|(\vec{a} \cdot \vec{b})+\|\vec{b}\|\|\vec{a}\|^{2}}{\|\vec{a}\|\|\vec{c}\|}=\frac{\vec{a} \cdot \vec{b}+\|\vec{b}\|\|\vec{a}\|}{\|\vec{c}\|}
$$

and the cosine of the angle between \vec{b} and \vec{c} is

$$
\frac{\vec{b} \cdot \vec{c}}{\|\vec{b}\|\|\vec{c}\|}=\frac{\|\vec{a}\|\|\vec{b}\|^{2}+\|\vec{b}\|(\vec{a} \cdot \vec{b})}{\|\vec{b}\|\|\vec{c}\|}=\frac{\|\vec{b}\|\|\vec{a}\|+\vec{a} \cdot \vec{b}}{\|\vec{c}\|}
$$

the same thing.
10. In the triangle $A B C$, points A_{1}, B_{1}, and C_{1} are chosen on the sides $B C, A C$, and $A B$ respectively in such a way that $A A_{1}, B B_{1}$, and $C C_{1}$ are the three (angular) bisectors of the triangle $A B C$. Show that, if

$$
\begin{equation*}
\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}=\overrightarrow{0}, \tag{1}
\end{equation*}
$$

then the triangle $A B C$ must be equilateral.
Solution. Let's define the vectors $\overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\vec{b}, \overrightarrow{A B}=\vec{c}$, and let's denote their lengths by a, b, and c respectively. Then, we see immediately that

$$
\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},
$$

and hence

$$
\begin{equation*}
\vec{c}=-\vec{a}-\vec{b} . \tag{2}
\end{equation*}
$$

Since the point C_{1} is on the line segment $A B$, we must have

$$
\overrightarrow{C C_{1}}=\lambda \overrightarrow{C A}+(1-\lambda) \overrightarrow{C B}=\lambda \vec{b}+(1-\lambda)(-\vec{a})
$$

for some real λ between 0 and 1 , as shown in class. On the other hand, according to the result of the previous problem, $\overrightarrow{C C_{1}}$ must be proportional to

$$
\|\overrightarrow{C B}\| \overrightarrow{C A}+\|\overrightarrow{C A}\| \overrightarrow{C B}=a \vec{b}+b(-\vec{a})
$$

Combining these two observations, we conclude that

$$
\overrightarrow{C C_{1}}=\frac{a}{a+b} \vec{b}-\frac{b}{a+b} \vec{a} .
$$

Similarly, we have

$$
\overrightarrow{A A_{1}}=\frac{b}{b+c} \vec{c}-\frac{c}{b+c} \vec{b}
$$

and

$$
\overrightarrow{C C_{1}}=\frac{c}{a+c} \vec{a}-\frac{a}{a+c} \vec{c} .
$$

Adding these three equalities, and using (1), we get

$$
\left(\frac{c}{a+c}-\frac{b}{a+b}\right) \vec{a}+\left(\frac{a}{a+b}-\frac{c}{b+c}\right) \vec{b}+\left(\frac{b}{b+c}-\frac{a}{a+c}\right) \vec{c}=\overrightarrow{0} .
$$

Combining this with (2) we get, after simplification,

$$
\left(\frac{b}{b+c}+\frac{b}{a+b}-1\right) \vec{a}=\left(\frac{a}{a+b}+\frac{a}{a+c}-1\right) \vec{b}
$$

Since the vectors \vec{a} and \vec{b} are not collinear, this is possible only if both coefficients are zeros, i.e.

$$
\begin{aligned}
& \frac{b}{b+c}+\frac{b}{a+b}=1 \\
& \frac{a}{a+b}+\frac{a}{a+c}=1
\end{aligned}
$$

To solve this system, we get rid of the denominators, by multiplying the first equation by $(b+c)(a+b)$, and the second by $(a+b)(a+c)$. After simplification we get:

$$
\begin{aligned}
b^{2} & =a c \\
a^{2} & =b c
\end{aligned}
$$

or, equivalenly,

$$
\begin{aligned}
& \frac{a}{b}=\frac{b}{c} \\
& \frac{a}{b}=\frac{c}{a} .
\end{aligned}
$$

In other words, we have

$$
\frac{a}{b}=\frac{b}{c}=\frac{c}{a},
$$

which implies

$$
a=b=c .
$$

