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Homework Assignment 2
Solutions

1. Let ~a, ~b, and ~c be three vectors, such that ~c 6= ~0.

(a) If ~a · ~c = ~b · ~c, does it follow that ~a = ~b? Explain.

(b) If ~a× ~c = ~b× ~c, does it follow that ~a = ~b? Explain.

(c) If ~a · ~c = ~b · ~c and ~a× ~c = ~b× ~c, does it follow that ~a = ~b? Explain.

Solution. First of all, observe that the quality

~a · ~c = ~b · ~c is equivalent to (~a−~b) · ~c = ~0,

and the quality
~a× ~c = ~b · ~c is equivalent to (~a−~b)× ~c = ~0.

(a) The answer is no. It simply means that ~a−~b is perpendicular to ~c.

(b) Again, the answer is no. It simply means that ~a−~b is parallel to ~c.

(c) Now the answer is yes. In this case, ~a −~b must be both perpendicular and parallel
to ~c. Since ~c 6= ~0, this is only possible if ~a−~b = ~0.

2. Let ~a, ~b, ~c and ~d be four vectors. Show that

(~a×~b) · (~c× ~d) =

∣∣∣∣∣ ~a · ~c ~b · ~c
~a · ~d ~b · ~d

∣∣∣∣∣ . (1)

Solution. This is a generalization of the equality

‖~a×~b‖2 = ‖~a‖2‖~b‖2 − ‖~a ·~b‖2,

or, equivalently,

(~a×~b) · (~a×~b) =

∣∣∣∣∣ ~a · ~a ~b · ~a
~a · ~a ~b ·~b

∣∣∣∣∣ , (2)

which we considered in class.

There are several ways to prove (1). A “brute-force” approach is to express all the four
vectors in components, and verify the equality. This involves reducing an expression with
30 terms of the form aibjckdl.

A more intelligent approach is the following. Look at both sides of (1). Each side is an
expression of ~a, ~b, ~c, and ~d. Each side is linear with respect to each of the four arguments.
Thus, it suffices to prove (1) for the case when each of the vectors ~a, ~b, ~c, and ~d is one of
the coordinate vectors ~i, ~j, ~k.

Further, on both sides of (1), exchanging ~a and ~b changes the sign of the expression, and
so does the exchanging of ~c and ~d. On the other hand, exchanging the pair ~a, ~b with the
pair ~c, ~d, does not change either side of (1) at all.
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Finally, any true equality involving only dot and cross products of~i, ~j, ~k, will remain true
if we replace ~i, ~j, ~k cyclically by ~j, ~k, ~i, respectively.

The last two observations allow us to reduce the proof of (1) to only two cases:

If ~a =~i, ~b = ~j, ~c = ~j, ~d = ~k, then both sides are equal to zero.

If ~a = ~c =~i, ~b = ~d = ~j, then both sides are equal to one.

All the other cases follow from these two, by using the above observations.

3. Let ~a, ~b, and ~c be three vectors.

(a) Show that ~a×(~b×~c) is a linear combination of ~b and ~c. Use the result of the previous
problem to find the coefficients of this linear combination.

(b) Show that
~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = ~0

Solution.

(a) If ~b and ~c are collinear, then ~a× (~b× ~c) is zero, and the statement is obvious.
Let’s look at the case when ~b and ~c are not collinear. By the geometric interpretation
of cross product, the vector ~a× (~b× ~c) is perpendicular to ~b× ~c. The latter vector,
~b×~c, is, in turn, perpendicular to both~b and ~c. Combining these two observations we
see that ~a×(~b×~c) must lie in the plane of ~b and ~c, and hence be a linear combination
of these two:

~a× (~b× ~c) = λ~b+ µ~c.

To find λ and µ, we will dot-multyply the above equality by ~b and by ~c:

~b · (~a× (~b× ~c)) = λ~b ·~b+ µ~b · ~c
~c · (~a× (~b× ~c)) = λ~c ·~b+ µ~c · ~c.

Using the fact that, for any three vectors, ~u · (~v × ~w) = (~u × ~v) · ~w, we can rewrite
the above pair of equations as

(~b× ~a) · (~b× ~c) = λ~b ·~b+ µ~b · ~c
(~c× ~a) · (~b× ~c) = λ~c ·~b+ µ~c · ~c.

Next, we can appeal to the result of the previous problem, and recast the two equa-
tions into the form:

(~a · ~c)(~b ·~b)− (~a ·~b)(~b · ~c) = λ~b ·~b+ µ~b · ~c
(~a · ~c)(~c ·~b)− (~a ·~b)(~c · ~c) = λ~c ·~b+ µ~c · ~c.

This is a linear system of two equations for the two unknowns, λ and µ. One solution
is readily visible: λ = ~a · ~c, µ = −~a ·~b. Since the vectors ~b and ~c are not collinear,
the determinant of the system, (~b ·~b)(~c ·~c)− (~b ·~c)(~c ·~b) is non-zero; this means that
there are no other solutions. Hence,

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c.
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(b) Usung the result of the previous part, we can write

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c
~b× (~c× ~a) = (~b · ~a)~c− (~b · ~c)~a
~c× (~a×~b) = (~c ·~b)~a− (~c · ~a)~b

Adding these three equalities, we get the desired result,

~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = ~0

This is called Jacobi’s identity, and it shows that the vectors in IR3, with the usual
linear space operations, and with the cross product, form a Lie algebra.

4. Find the area of the triangle with vertices P (1,−1, 2), Q(3, 2, 3), and R(0, 1,−1).

Solution. Denote ~a = −−→PQ = 〈2, 3, 1〉 and ~b = −→PR = 〈−1, 2,−3〉. We have

~a×~b = 〈−11, 5, 7〉,

and
‖~a×~b‖ =

√
121 + 25 + 49 =

√
195

is the area of the parallelogram spanned by the vectors −−→PQ and −→PR. The area of the
triangle is half of the area of the parallelogram, i.e.

√
195 /2.

5. Find an equation for the line which both passes through P0(−1, 2, 3) and

(a) is parallel to the line defined by l(t) = (1, 2t,−3 + t).

(b) is perpendicular to the line defined by l(t) = (1, 2t,−3 + t).

Solution.

(a) Since the lines are apallel, they have the same direction vector, 〈0, 2, 1〉. We are
looking for a line passing through (−1, 2, 3). Putting these two pieces of information
together, we get the representation (−1, 2 + 2t, 3 + t).

(b) Since the two lines are perpendicular, they must cross . More precisely, they cross
at the intersection point of l and a plane perpendicular to l and passing through P .
The normal vector of this plane is equal to the direction vetot of l, 〈0, 2, 1〉. The
equation of this plane is

2(y − 2) + (z − 3) = 0.

To find the intersection point Q, we substitute x = −1, y = 2t, z = −3 + t,

2(2t− 2) + (−3 + t− 3) = 0.

This gives t = 2, and Q has coordinates (−1, 4,−1). The line we are looking for
passes through the points P and Q. A direction vector is −−→PQ = 〈0, 2,−4〉. The
parametric equation is then (−1 + 2t, 2 + 2t, 3− 4t).

6. Find the distance from the point P (1,−1, 2) to the line given by l(t) = (1+ t, 2−2t, 3+ t).

Solution. We start by choosing a point on the line l, say the point M(1, 2, 3) corre-
sponding to t = 0. Denote ~u = −−→MP = 〈0,−3,−1〉 and ~v = 〈1,−2, 1〉 (the direction vector
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of l). Let θ be the angle between ~u and ~v. Then the distance from P to l is equal to
|MP | sin θ. We have

cos θ =
~u · ~v
‖~u‖ ‖~v‖

=
5√

10
√

6
,

and the distance is

|MP | sin θ = ‖~u‖ sin θ =
√

10
√

1− 25
60

=
√

35/6.

7. Consider the lines l1(t) = (3t+ 3, t+ 3, t) and l2(t) = (t− 2, t, 2t− 5).

(a) Do these lines intersect?

(b) If t represents time, and a particle travels on each line with its position determined
by l1(t) and l2(t), will they ever collide?

Solution.

(a) The two lines intersect if they have a common point, i.e. if l1(t1) = l2(t2) for some
values of t1 and t2. In coordinates, this means

3t1 + 3 = t2 − 2
t1 + 3 = t2

t1 = 2t2 − 5

Solving this, we get t1 = −1, t2 = 2, and the intersection point is l1(−1) = l2(2) =
(0, 2,−1).

(b) For the two particles to collide, they must be at the same place at the same time.
This cannot happen, because, for example, the y-coordinates are always different
(they differ by 3).

8. Find a point where the line given by
(
t+ 1, 2t− 1, t3

)
intersects the plane 2x−y+3z = 6.

Solution. The coordinates (x, y, z) of the intersection point must be both on the line
and on the plane. This means

x = t+ 1
y = 2t− 1

z =
t

3
2x− y + 3z = 6

Solving this system, we get t = 3, x = 4, y = 5, z = 1. The intersection point is (4, 5, 1).

9. Find the distance from the point P (0,−1, 2) to the plane 2x+ 3y − z = 6.

Solution. The distance is given by the formula we derived in class:

|(2)(0) + (3)(−1)− (2)− 6|√
22 + 32 + 12

=
11√
14
.
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10. Find the (acute) angle beteween the planes 2x− y = 7 and −x+ y − 3z = 5.

Solution. The angle between the two planes is equal to the angle between their normal
vectors, ~u = 〈2,−1, 0〉, and ~v = 〈−1, 1,−3〉. In fact, there are two angles between the
planes which complement each other to 2π. The cosines of these two angles have the
same absolute value and opposite signs. The cosine corresponding to the acute angle θ is
positive. We have

cos θ =
|~u · ~v|
‖~u‖ ‖~v‖

=
3√

5
√

11
.

The angle is arccos(3/
√

55) ≈ 1.15434, or, in degrees, approximately 66o8′20′′.
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