Dept. of Math. Sci., WPI MA 1034 Analysis 4 Bogdan Doytchinov, Term D03

Homework Assignment 2 Solutions

- 1. Let \vec{a}, \vec{b} , and \vec{c} be three vectors, such that $\vec{c} \neq \vec{0}$.
 - (a) If $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$, does it follow that $\vec{a} = \vec{b}$? Explain.
 - (b) If $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$, does it follow that $\vec{a} = \vec{b}$? Explain.
 - (c) If $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$, does it follow that $\vec{a} = \vec{b}$? Explain.

SOLUTION. First of all, observe that the quality

 $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c}$ is equivalent to $(\vec{a} - \vec{b}) \cdot \vec{c} = \vec{0}$,

and the quality

$$\vec{a} \times \vec{c} = \vec{b} \cdot \vec{c}$$
 is equivalent to $(\vec{a} - \vec{b}) \times \vec{c} = \vec{0}$.

- (a) The answer is no. It simply means that $\vec{a} \vec{b}$ is perpendicular to \vec{c} .
- (b) Again, the answer is no. It simply means that $\vec{a} \vec{b}$ is parallel to \vec{c} .
- (c) Now the answer is yes. In this case, $\vec{a} \vec{b}$ must be both perpendicular and parallel to \vec{c} . Since $\vec{c} \neq \vec{0}$, this is only possible if $\vec{a} \vec{b} = \vec{0}$.
- 2. Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be four vectors. Show that

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{d} & \vec{b} \cdot \vec{d} \end{vmatrix}.$$
 (1)

SOLUTION. This is a generalization of the equality

$$\|\vec{a} \times \vec{b}\|^2 = \|\vec{a}\|^2 \|\vec{b}\|^2 - \|\vec{a} \cdot \vec{b}\|^2,$$

or, equivalently,

$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} \\ \vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix},$$
(2)

which we considered in class.

There are several ways to prove (1). A "brute-force" approach is to express all the four vectors in components, and verify the equality. This involves reducing an expression with 30 terms of the form $a_i b_j c_k d_l$.

A more intelligent approach is the following. Look at both sides of (1). Each side is an expression of $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} . Each side is linear with respect to each of the four arguments. Thus, it suffices to prove (1) for the case when each of the vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} is one of the coordinate vectors $\vec{i}, \vec{j}, \vec{k}$.

Further, on both sides of (1), exchanging \vec{a} and \vec{b} changes the sign of the expression, and so does the exchanging of \vec{c} and \vec{d} . On the other hand, exchanging the pair \vec{a} , \vec{b} with the pair \vec{c} , \vec{d} , does not change either side of (1) at all.

Finally, any true equality involving only dot and cross products of \vec{i} , \vec{j} , \vec{k} , will remain true if we replace \vec{i} , \vec{j} , \vec{k} cyclically by \vec{j} , \vec{k} , i respectively.

The last two observations allow us to reduce the proof of (1) to only two cases:

If $\vec{a} = \vec{i}, \vec{b} = \vec{j}, \vec{c} = \vec{j}, \vec{d} = \vec{k}$, then both sides are equal to zero.

If $\vec{a} = \vec{c} = \vec{i}$, $\vec{b} = \vec{d} = \vec{j}$, then both sides are equal to one.

All the other cases follow from these two, by using the above observations.

- 3. Let \vec{a} , \vec{b} , and \vec{c} be three vectors.
 - (a) Show that $\vec{a} \times (\vec{b} \times \vec{c})$ is a linear combination of \vec{b} and \vec{c} . Use the result of the previous problem to find the coefficients of this linear combination.
 - (b) Show that

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$$

SOLUTION.

- (a) If \vec{b} and \vec{c} are collinear, then $\vec{a} \times (\vec{b} \times \vec{c})$ is zero, and the statement is obvious.
 - Let's look at the case when \vec{b} and \vec{c} are not collinear. By the geometric interpretation of cross product, the vector $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $\vec{b} \times \vec{c}$. The latter vector, $\vec{b} \times \vec{c}$, is, in turn, perpendicular to both \vec{b} and \vec{c} . Combining these two observations we see that $\vec{a} \times (\vec{b} \times \vec{c})$ must lie in the plane of \vec{b} and \vec{c} , and hence be a linear combination of these two:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \lambda \vec{b} + \mu \vec{c}$$

To find λ and μ , we will dot-multiply the above equality by \vec{b} and by \vec{c} :

$$\vec{b} \cdot (\vec{a} \times (\vec{b} \times \vec{c})) = \lambda \vec{b} \cdot \vec{b} + \mu \vec{b} \cdot \vec{c} \vec{c} \cdot (\vec{a} \times (\vec{b} \times \vec{c})) = \lambda \vec{c} \cdot \vec{b} + \mu \vec{c} \cdot \vec{c}.$$

Using the fact that, for any three vectors, $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$, we can rewrite the above pair of equations as

$$\begin{aligned} (\vec{b}\times\vec{a})\cdot(\vec{b}\times\vec{c}) &= \lambda\vec{b}\cdot\vec{b}+\mu\vec{b}\cdot\vec{c} \\ (\vec{c}\times\vec{a})\cdot(\vec{b}\times\vec{c}) &= \lambda\vec{c}\cdot\vec{b}+\mu\vec{c}\cdot\vec{c}. \end{aligned}$$

Next, we can appeal to the result of the previous problem, and recast the two equations into the form:

$$\begin{aligned} (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) &= \lambda \vec{b} \cdot \vec{b} + \mu \vec{b} \cdot \vec{c} \\ (\vec{a} \cdot \vec{c})(\vec{c} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})(\vec{c} \cdot \vec{c}) &= \lambda \vec{c} \cdot \vec{b} + \mu \vec{c} \cdot \vec{c}. \end{aligned}$$

This is a linear system of two equations for the two unknowns, λ and μ . One solution is readily visible: $\lambda = \vec{a} \cdot \vec{c}$, $\mu = -\vec{a} \cdot \vec{b}$. Since the vectors \vec{b} and \vec{c} are not collinear, the determinant of the system, $(\vec{b} \cdot \vec{b})(\vec{c} \cdot \vec{c}) - (\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{b})$ is non-zero; this means that there are no other solutions. Hence,

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}.$$

(b) Usung the result of the previous part, we can write

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a} \vec{c} \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b})\vec{a} - (\vec{c} \cdot \vec{a})\vec{b}$$

Adding these three equalities, we get the desired result,

 $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$

This is called Jacobi's identity, and it shows that the vectors in \mathbb{R}^3 , with the usual linear space operations, and with the cross product, form a *Lie algebra*.

4. Find the area of the triangle with vertices P(1, -1, 2), Q(3, 2, 3), and R(0, 1, -1). SOLUTION. Denote $\vec{a} = \overrightarrow{PQ} = \langle 2, 3, 1 \rangle$ and $\vec{b} = \overrightarrow{PR} = \langle -1, 2, -3 \rangle$. We have

$$\vec{a} \times \vec{b} = \langle -11, 5, 7 \rangle$$

and

$$\|\vec{a} \times \vec{b}\| = \sqrt{121 + 25 + 49} = \sqrt{195}$$

is the area of the parallelogram spanned by the vectors \overrightarrow{PQ} and \overrightarrow{PR} . The area of the triangle is half of the area of the parallelogram, i.e. $\sqrt{195}/2$.

- 5. Find an equation for the line which both passes through $P_0(-1,2,3)$ and
 - (a) is parallel to the line defined by l(t) = (1, 2t, -3 + t).
 - (b) is perpendicular to the line defined by l(t) = (1, 2t, -3 + t).

SOLUTION.

- (a) Since the lines are apallel, they have the same direction vector, (0, 2, 1). We are looking for a line passing through (-1, 2, 3). Putting these two pieces of information together, we get the representation (-1, 2 + 2t, 3 + t).
- (b) Since the two lines are perpendicular, they must cross . More precisely, they cross at the intersection point of l and a plane perpendicular to l and passing through P. The normal vector of this plane is equal to the direction vetot of l, $\langle 0, 2, 1 \rangle$. The equation of this plane is

$$2(y-2) + (z-3) = 0.$$

To find the intersection point Q, we substitute x = -1, y = 2t, z = -3 + t,

$$2(2t-2) + (-3+t-3) = 0.$$

This gives t = 2, and Q has coordinates (-1, 4, -1). The line we are looking for passes through the points P and Q. A direction vector is $\overrightarrow{PQ} = \langle 0, 2, -4 \rangle$. The parametric equation is then (-1 + 2t, 2 + 2t, 3 - 4t).

6. Find the distance from the point P(1, -1, 2) to the line given by l(t) = (1+t, 2-2t, 3+t). SOLUTION. We start by choosing a point on the line l, say the point M(1, 2, 3) corresponding to t = 0. Denote $\vec{u} = \overrightarrow{MP} = \langle 0, -3, -1 \rangle$ and $\vec{v} = \langle 1, -2, 1 \rangle$ (the direction vector of l). Let θ be the angle between \vec{u} and \vec{v} . Then the distance from P to l is equal to $|MP|\sin\theta$. We have

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \, \|\vec{v}\|} = \frac{5}{\sqrt{10}\sqrt{6}},$$

and the distance is

$$|MP|\sin\theta = ||\vec{u}||\sin\theta = \sqrt{10}\sqrt{1 - \frac{25}{60}} = \sqrt{35/6}.$$

- 7. Consider the lines $l_1(t) = (3t+3, t+3, t)$ and $l_2(t) = (t-2, t, 2t-5)$.
 - (a) Do these lines intersect?
 - (b) If t represents time, and a particle travels on each line with its position determined by $l_1(t)$ and $l_2(t)$, will they ever collide?

SOLUTION.

(a) The two lines intersect if they have a common point, i.e. if $l_1(t_1) = l_2(t_2)$ for some values of t_1 and t_2 . In coordinates, this means

$$\begin{array}{rcl} 3t_1 + 3 & = & t_2 - 2 \\ t_1 + 3 & = & t_2 \\ t_1 & = & 2t_2 - 5 \end{array}$$

Solving this, we get $t_1 = -1$, $t_2 = 2$, and the intersection point is $l_1(-1) = l_2(2) = (0, 2, -1)$.

- (b) For the two particles to collide, they must be at the same place at the same time. This cannot happen, because, for example, the *y*-coordinates are always different (they differ by 3).
- 8. Find a point where the line given by $(t + 1, 2t 1, \frac{t}{3})$ intersects the plane 2x y + 3z = 6. SOLUTION. The coordinates (x, y, z) of the intersection point must be both on the line and on the plane. This means

$$x = t + 1$$
$$y = 2t - 1$$
$$z = \frac{t}{3}$$
$$2x - y + 3z = 6$$

Solving this system, we get t = 3, x = 4, y = 5, z = 1. The intersection point is (4, 5, 1).

9. Find the distance from the point P(0, -1, 2) to the plane 2x + 3y - z = 6. SOLUTION. The distance is given by the formula we derived in class:

$$\frac{|(2)(0) + (3)(-1) - (2) - 6|}{\sqrt{2^2 + 3^2 + 1^2}} = \frac{11}{\sqrt{14}}.$$

10. Find the (acute) angle between the planes 2x - y = 7 and -x + y - 3z = 5.

SOLUTION. The angle between the two planes is equal to the angle between their normal vectors, $\vec{u} = \langle 2, -1, 0 \rangle$, and $\vec{v} = \langle -1, 1, -3 \rangle$. In fact, there are two angles between the planes which complement each other to 2π . The cosines of these two angles have the same absolute value and opposite signs. The cosine corresponding to the acute angle θ is positive. We have

$$\cos \theta = \frac{|\vec{u} \cdot \vec{v}|}{\|\vec{u}\| \, \|\vec{v}\|} = \frac{3}{\sqrt{5}\sqrt{11}}.$$

The angle is $\arccos(3/\sqrt{55}) \approx 1.15434$, or, in degrees, approximately $66^{\circ}8'20''$.