Dept. of Math. Sci., WPI

MA 1034 Analysis 4
Bogdan Doytchinov, Term D03

Homework Assignment 3

Solutions

1. Let $A, B \subseteq \mathbb{R}^{n}$. Prove that $(\operatorname{int} A) \cap(\operatorname{int} B)=\operatorname{int}(A \cap B)$. Is the statement true if "intersection" is replaced by "union"? Explain.

Solution. To show that two sets are equal means to show that they have the same elements.

Let $x \in(\operatorname{int} A) \cap(\operatorname{int} B)$. This means $x \in \operatorname{int} A$ and $x \in \operatorname{int} B$. Therevore, there exist $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ so that $B_{\varepsilon_{1}}(x) \subseteq A$ and $B_{\varepsilon_{2}}(x) \subseteq B$. Choose $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. Then $B_{\varepsilon}(x) \subseteq A$ and $B_{\varepsilon}(x) \subseteq B$, hence $B_{\varepsilon}(x) \subseteq A \cap B$. This, in turn, means $x \in \operatorname{int}(A \cap B)$.
Conversely, let now $x \in \operatorname{int}(A \cap B)$. This means that, for some $\varepsilon>0$, we have $B_{\varepsilon}(x) \subseteq$ $A \cap B$. This implies $B_{\varepsilon}(x) \subseteq A$ and $B_{\varepsilon}(x) \subseteq B$. This, in turn, means $x \in \operatorname{int} A$ and $x \in \operatorname{int} B$, i.e. $x \in(\operatorname{int} A) \cap(\operatorname{int} B)$.
If "intersection" is replaced by "union", we can show easily that

$$
(\operatorname{int} A) \cup(\operatorname{int} B) \subseteq \operatorname{int}(A \cup B)
$$

However, the converse inclusion is not true in general, as the following example shows. Let $A=\{(x, y): x \leq 0\}$ and $B=\{(x, y): x \geq 0\}$. Then the point $(0,0)$ is in $\operatorname{int}(A \cup B)$, but not in $(\operatorname{int} A) \cup(\operatorname{int} B)$.
2. Let $A, B \subseteq \mathbb{R}^{n}$. Prove that $\left(A^{\prime} \cup B^{\prime}\right)=(A \cup B)^{\prime}$. Is the statement true if "union" is replaced by "intersection"? Explain.

Solution. Again, to show that two sets are equal means to show that they have the same elements.

Let $x \in\left(A^{\prime} \cup B^{\prime}\right)$. This means $x \in A^{\prime}$ or $x \in B^{\prime}$. By symmetry, it is enough to consider the case $x \in A^{\prime}$. There exists a sequence x_{1}, x_{2}, \cdots so that, for each n, we have $x_{n} \neq x$, $x_{n} \in A$, and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Since $x_{n} \in A \subseteq A \cup B$, we see that $x \in(A \cup B)^{\prime}$.
Now, conversely, let $x \in(A \cup B)^{\prime}$. This means that there exists a sequence x_{1}, x_{2}, \cdots so that, for each n, we have $x_{n} \neq x, x_{n} \in(A \cup B)$, and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Observe that $x_{n} \in(A \cup B)$ means $x_{n} \in A$ or $x_{n} \in B$. At least one of the sets A and B must contain infinitely many terms of the sequence. Then x is an accumulation point for that set, and therefore $x \in\left(A^{\prime} \cup B^{\prime}\right)$.

Again, if "union" is replaced by "intersection", we can easily show that

$$
\left(A^{\prime} \cap B^{\prime}\right) \supseteq(A \cap B)^{\prime}
$$

but the converse inclusion is not true in general, as the following example shows. Let $A=\{(x, y): x \leq 0,|y| \leq|x|\}$ and $B=\{(x, y): x \geq 0,|y| \leq x\}$. Then the point $(0,0)$ is in $A^{\prime} \cap B^{\prime}$, but not in $(A \cap B)^{\prime}$.
3. Show that the function $f(x, y)=\frac{1}{x+y}$ is continuous but not uniformly continuous on the open square $D=(0,1) \times(0,1)$.

Solution. Consider the two sequences $\left(x_{n}, y_{n}\right)=(1 / n, 1 / n)$ and $\left(s_{n}, t_{n}\right)=(1 /(n+$ $1), 1 /(n+1)$). We have $\sqrt{\left(s_{n}-x_{n}\right)^{2}+\left(t_{n}-y_{n}\right)^{2}} \rightarrow 0$ as $n \rightarrow \infty$, but

$$
\left|f\left(s_{n}, t_{n}\right)-f\left(x_{n}, y_{n}\right)\right|=\frac{1}{2} \nrightarrow 0
$$

as $n \rightarrow \infty$.
In problems 4-7, find the limit, if it exists, or show that the limit does not exist.
4.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}
$$

Solution. The limit does not exist. Indeed, if we take $\left(x_{n}, y_{n}\right)=(1 / n, 1 / n)$, we get a limit $1 / 2$, but if we take $\left(x_{n}, y_{n}\right)=(1 / n, 0)$, we get a limit 1 .
5.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{3 x^{2}+y^{2}}
$$

Solution. The limit does not exist. Indeed, if we take $\left(x_{n}, y_{n}\right)=(1 / n, 1 / n)$, we get a limit $1 / 4$, but if we take $\left(x_{n}, y_{n}\right)=(1 / n, 0)$, we get a limit 0 .
6.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}
$$

Solution. The limit is zero. Indeed, we have

$$
\frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}=\frac{x^{2}}{x^{2}+2 y^{2}} \sin ^{2} y
$$

The first term of this product is bounded, while the second one, $\sin ^{2} y$ goes to zero as $(x, y) \rightarrow(0,0)$.
7.

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z+x z}{x^{2}+y^{2}+z^{2}} .
$$

Solution. The limit does not exist. Indeed, if we take $\left(x_{n}, y_{n}, z_{n}\right)=(1 / n, 1 / n, 1 / n)$, we get a limit 1 , but if we take $\left(x_{n}, y_{n}, z_{n}\right)=(1 / n, 1 / n, 0)$, we get a limit $1 / 2$.

In problems 8-10, determine the set of points where the function is continuous.
8.

$$
F(x, y)=\frac{\sin (x y)}{e^{x}-y^{2}}
$$

Solution. The given function is the ratio of two continuous functions and is continuous wherever it is defined, i.e. on the set

$$
\left\{(x, y): e^{x} \neq y^{2}\right\}
$$

9.

$$
f(x, y, z)=\frac{\sqrt{y}}{x^{2}-y^{2}+z^{2}}
$$

Solution. The given function is the ratio of a squre root and a polynomial. It will be continuous whrever the square root is defined and the polynomial is not zero. In other words, f will be continuous throughout its domain, i.e., the set

$$
\left\{(x, y, z): y>0, y^{2} \neq x^{2}+z^{2}\right\} .
$$

10.

$$
f(x, y, z)=\arcsin \sqrt{x^{2}+y^{2}+z^{2}}
$$

Solution. The given function is a composition of the arcsine, a square root, and a polynomial. Each of these functions is continuous wherever it is defined. Their composition will be continuous throughout the domain of the function, i.e., the set

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\} .
$$

