Dept. of Math. Sci., WPI
MA 1034 Analysis 4
Instructor: Bogdan Doytchinov, Term D01

Homework Assignment 1

Due Tuesday, March 25, 2001

1. Find an equation of a sphere that has a center at the point $(5,3,-6)$ and touches the $y z$-plane.
2. Find the equation of the sphere with a diameter determined by its endpoints, $(1,-2,7)$ and $(9,0,1)$.
3. Find the center and the radius of a sphere with an equation

$$
2 x^{2}+2 y^{2}+2 z^{2}+4 y-2 z=1 .
$$

4. Two spheres with equations

$$
x^{2}+y^{2}+z^{2}-4 x-2 y-6 z+12=0
$$

and

$$
x^{2}+y^{2}+z^{2}-2 x+2 y-10 z+24=0
$$

respectively, intersect. Their intersection is a circle in \mathbb{R}^{3}. Find the center and the radius of this cirle.
5. Write the vector $\vec{u}=\langle 1,0,-2\rangle$ as a linear combination of the three vectors $\langle 1,1,0\rangle$, $\langle-1,1,-2\rangle$, and $\langle 0,1,-2\rangle$.
6. Let $\|\vec{a}+\vec{b}\|=\|\vec{a}-\vec{b}\|$. Find the angle between \vec{a} and \vec{b}.
7. The Paralleloram Law states that

$$
\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2}=2\|\vec{a}\|^{2}+2\|\vec{b}\|^{2}
$$

Give a geometric interpretation of this law. Prove it.
8. If $\|\vec{a}\|=\|\vec{a}-\vec{b}\|$, show that $\vec{a} \cdot \vec{b}=(\vec{b}-\vec{a}) \cdot \vec{b}$.
9. If $\vec{c}=\|\vec{a}\| \vec{b}+\|\vec{b}\| \vec{a}$, where \vec{a}, \vec{b}, and \vec{c} are all nonzero vectors, show that \vec{c} bisects the angle between \vec{a} and \vec{b}.
10. In the triangle $A B C$, points A_{1}, B_{1}, and C_{1} are chosen on the sides $B C, A C$, and $A B$ respectively in such a way that $A A_{1}, B B_{1}$, and $C C_{1}$ are the three (angular) bisectors of the triangle $A B C$. Show that, if

$$
\overrightarrow{A A_{1}}+\overrightarrow{B B_{1}}+\overrightarrow{C C_{1}}=\overrightarrow{0},
$$

then the triangle $A B C$ must be equilateral.

