Dept. of Math. Sci., WPI

MA 1034 Analysis 4
Bogdan Doytchinov, Term D03

Homework Assignment 3

Due Friday, April 18, 2003

1. Let $A, B \subseteq \mathbb{R}^{n}$. Prove that $(\operatorname{int} A) \cap(\operatorname{int} B)=\operatorname{int}(A \cap B)$. Is the statement true if "intersection" is replaced by "union"? Explain.
2. Let $A, B \subseteq \mathbb{R}^{n}$. Prove that $\left(A^{\prime} \cup B^{\prime}\right)=(A \cup B)^{\prime}$. Is the statement true if "union" is replaced by "intersection"? Explain.
3. Show that the function $f(x, y)=\frac{1}{x+y}$ is continuous but not uniformly continuous on the open square $D=(0,1) \times(0,1)$.

In problems 4-7, find the limit, if it exists, or show that the limit does not exist.
4.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}} .
$$

5.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{3 x^{2}+y^{2}} .
$$

6.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}
$$

7.

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z+x z}{x^{2}+y^{2}+z^{2}} .
$$

In problems 8-10, determine the set of points where the function is continuous.
8.

$$
F(x, y)=\frac{\sin (x y)}{e^{x}-y^{2}}
$$

9.

$$
f(x, y, z)=\frac{\sqrt{y}}{x^{2}-y^{2}+z^{2}}
$$

10.

$$
f(x, y, z)=\arcsin \sqrt{x^{2}+y^{2}+z^{2}}
$$

