Dept. of Math. Sci., WPI MA 1034 Analysis 4 Bogdan Doytchinov, Term D03

Homework Assignment 4 Due Friday, April 25, 2003

- 1. If $f(x,y) = 3x^2y^3 \sin x$, find f_x , f_y , f_{xx} , f_{xy} , f_{yy} , f_{xxy} , and f_{xyx} .
- 2. Suppose that

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Use the definitions of partial derivatives to compute $f_x(0, y)$, $f_y(x, 0)$, $f_{xy}(0, 0)$, and $f_{yx}(0, 0)$. Are the mixed partials at (0, 0) equal?
- (b) Compute $f_x(x, y)$ and $f_y(x, y)$ for $(x, y) \neq (0, 0)$. Are the values $f_x(0, y)$ and $f_y(x, 0)$ the same as the ones found in part (a)?
- 3. Show that $f(x,y) = \sqrt{x^2 + y^2}$ is not differentiable at the origin by showing that:
 - (a) there is no \vec{m} as needed in Definition 11.4.1.
 - (b) $f_x(0,0)$ does not exist and using part (c) of remark 11.4.2
- 4. Consider the function $f(x, y) = \sqrt[3]{xy}$.
 - (a) Show that $f_x(0,0) = 0 = f_y(0,0)$.
 - (b) Find $\nabla f(0,0)$.
 - (c) Show that f is not differentiable at (0,0).
 - (d) Is f continuous at (0,0)? Explain.
- 5. Show that

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

is not differentiable at (0,0).

6. Find a point (a, b) for which the function

$$f(x,y) = \begin{cases} (x-y)^2 \sin \frac{1}{x-y}, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

is differentiable at (a, b), but f_x and f_y are not continuous at (a, b).

 $7. \ \mathrm{If}$

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$$

show that

- (a) f is continuous at (0,0).
- (b) $f_x(0,0)$ and $f_y(0,0)$ both exist.
- (c) f is not differentiable at (0,0).

8. If

$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^6 + 2y^2}}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$$

show that f is not continuous at (0,0), but has a directional derivative in every direction at (0,0).

9. If

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$$

show that $D_{\vec{u}}f(0,0)$ exists only if $\vec{u} = \langle 1,0 \rangle$ or $\vec{u} = \langle 0,1 \rangle$.

10. Find the unit vector in the direction in which $f(x, y) = y^2 \sin x$ increases most rapidly at the point (0, -2). What is the maximum rate of change of f at (0, -2)?