Dept. of Math. Sci., WPI

MA 1034 Analysis 4
Bogdan Doytchinov, Term D03

Homework Assignment 4

Due Friday, April 25, 2003

1. If $f(x, y)=3 x^{2} y^{3}-\sin x$, find $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}, f_{x x y}$, and $f_{x y x}$.
2. Suppose that

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Use the definitions of partial derivatives to compute $f_{x}(0, y), f_{y}(x, 0), f_{x y}(0,0)$, and $f_{y x}(0,0)$. Are the mixed partials at $(0,0)$ equal?
(b) Compute $f_{x}(x, y)$ and $f_{y}(x, y)$ for $(x, y) \neq(0,0)$. Are the values $f_{x}(0, y)$ and $f_{y}(x, 0)$ the same as the ones found in part (a)?
3. Show that $f(x, y)=\sqrt{x^{2}+y^{2}}$ is not differentiable at the origin by showing that:
(a) there is no \vec{m} as needed in Definition 11.4.1.
(b) $f_{x}(0,0)$ does not exist and using part (c) of remark 11.4.2
4. Consider the function $f(x, y)=\sqrt[3]{x y}$.
(a) Show that $f_{x}(0,0)=0=f_{y}(0,0)$.
(b) Find $\nabla f(0,0)$.
(c) Show that f is not differentiable at $(0,0)$.
(d) Is f continuous at $(0,0)$? Explain.
5. Show that

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

is not differentiable at $(0,0)$.
6. Find a point (a, b) for which the function

$$
f(x, y)= \begin{cases}(x-y)^{2} \sin \frac{1}{x-y}, & \text { if } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

is differentiable at (a, b), but f_{x} and f_{y} are not continuous at (a, b).
7. If

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

show that
(a) f is continuous at $(0,0)$.
(b) $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist.
(c) f is not differentiable at $(0,0)$.
8. If

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{\sqrt{x^{6}+2 y^{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0),\end{cases}
$$

show that f is not continuous at $(0,0)$, but has a directional derivative in every direction at $(0,0)$.
9. If

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

show that $D_{\vec{u}} f(0,0)$ exists only if $\vec{u}=\langle 1,0\rangle$ or $\vec{u}=\langle 0,1\rangle$.
10. Find the unit vector in the direction in which $f(x, y)=y^{2} \sin x$ increases most rapidly at the point $(0,-2)$. What is the maximum rate of change of f at $(0,-2)$?

