Dept. of Math. Sci., WPI
MA 1034 Analysis 4
Bogdan Doytchinov, Term D03

FINALEXAM

Due Thursday, May 1, 2003, by 5:00pm

INSTRUCTIONS

- This is a take-home exam. You must work on your own.
- Each problem has equal weight (20 points).
- You must turn in the solutions to 5 (five) of the following problems. If you turn in more, only your first five will be graded.
- You can turn for questions and clarifications to me, but you cannot discuss the exam with anyone else.
- You can freely use the textbook and your classnotes, as well as the posted solutions to the homework assignments and the midsemester exam.
- If you use any other text, you must indicate this in your solution, and give a clear reference to the text you have used, and to what extent.

1. Find the acute angle between two diagonals of a cube.
2. In the triangle $A B C,|A B|=|B C|$. A point D is chosen on the side $B C$ so that $|B D|:|D C|=1: 4$ and a point E is chosen on the side $A C$ so that $B E$ is perpendicular to $A C$. In what ratio does the line $A D$ divide the segment $B E$?
3. Let $A_{1} A_{2} \ldots A_{n}$ be a regular n-gon, inscribed in a circle with center O and radius r. Let X be an arbitrary point on the plane and denote $d=|O X|$. Show that

$$
\sum_{i=1}^{n}\left|A_{i} X\right|^{2}=n\left(r^{2}+d^{2}\right) .
$$

4. Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$
d=\frac{|(\vec{a} \times \vec{b}) \cdot \vec{c}|}{|\vec{a} \times \vec{b}|},
$$

where $\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{Q S}$, and $\vec{c}=\overrightarrow{Q P}$.
5. Show that the curve of intersection of the surfaces $x^{2}+2 y^{2}-z^{2}+3 x=1$ and $2 x^{2}+4 y^{2}-2 z^{2}-5 y=0$ lies in a plane, and find an equation of this plane.
6. A vector-valued function $\vec{r}(t)$, defined for $t \in[a, b]$ is called Lipschitzcontinuous if there exists a constant L such that, for any choice of $t_{1}, t_{2} \in[a, b]$, we have

$$
\left|\vec{r}\left(t_{2}\right)-\vec{r}\left(t_{1}\right)\right| \leq L\left|t_{2}-t_{1}\right| .
$$

If $\vec{r}(t)$ is Lipschitz-continuous, show that the curve parametrized by it is rectifiable.
7. Find the lengths of the curves described by:
(a) $\vec{r}(t)=\langle 4 \cos t, 4 \sin t, 3 t\rangle, 0 \leq t \leq \pi$,
(b) $\vec{r}(t)=\left\langle\sin (3 t), \cos (3 t), 2 t^{3 / 2}\right\rangle, 0 \leq t \leq 3$,
(c) $\vec{r}(t)=\langle 3 \sin t, 5 \cos t, 4 \sin t\rangle, 0 \leq t \leq 1$.
8. Prove or disprove: if \vec{u} and \vec{v} are Riemann-integrable vector-valued functions on $[a, b]$, then

$$
\int_{a}^{b}[\vec{u}(t) \cdot \vec{v}(t)] d t=\int_{a}^{b} \vec{u}(t) d t \cdot \int_{a}^{b} \vec{v}(t) d t .
$$

9. Suppose that $w=x^{3} y+y^{2}-4 z^{3}, x=r s, y=\left(r^{2}-s^{2}\right)^{3}$, and $z=2 r+s$. Use the chain rule to compute $\frac{\partial w}{\partial s}$. Express your answer in terms of r and s alone. Algebraic simplification is not necessary.
10. For

$$
f(x, y, z)=\frac{x}{x^{2}+y^{2}} e^{\sin \left(x^{2} y\right)}+\sin (z-2) \ln \left(x+\sqrt{1+x^{2}}\right),
$$

compute $f_{x}(1,0,2)$.
Hint: There is an easy way to do this. Recall the definition.
11. Let f be a continuously differentiable function of one variable and define

$$
w(x, y):=f\left(\frac{y}{y-x}\right)
$$

Show that, for $x \neq y$:

$$
x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}=0 .
$$

12. Assume that u and v have continuous second partial derivatives and that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} .
$$

Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { and } \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

13. Let f be a smooth function with the following property: At the point $(1,2,3)$, the function f decreases most rapidly in the direction given by the vector $\langle 5,-3,0\rangle$ and the rate of change of f in this direction is 17 . Find $\nabla f(1,2,3)$.
14. Let R be the region described by

$$
0 \leq y \leq \sqrt{16-x^{2}}, 0 \leq x \leq 4
$$

Find the absolute maximum and absolute minimum values of

$$
f(x, y)=x^{2}+y^{2}-4 x-2 y+1
$$

on R.
15. Let $f(x, y)$ be defined and continuous for all $(x, y) \in \mathbb{R}^{2}$. For every $t>0$ consider the region

$$
D_{t}:=\left\{(x, y): x^{2}+y^{2} \leq t^{2}\right\}
$$

and define

$$
F(t):=\iint_{D_{t}} f(x, y) d A .
$$

Show that, for $t>0$, the derivative of F is given by

$$
F^{\prime}(t)=\int_{0}^{2 \pi} t f(t \cos \theta, t \sin \theta) d \theta
$$

16. Let f be continuous on $[0,1]$ and let R be the triangular region with vertices $(0,0),(1,0)$, and $(0,1)$. Show that

$$
\iint_{R} f(x+y) d A=\int_{0}^{1} u f(u) d u
$$

17. Prove that

$$
\int_{0}^{1} \frac{x-1}{\ln x} d x=\ln 2 .
$$

Hint: Consider the function $f(x, y)=x^{y-1}$.
18. Prove that

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x=\frac{\pi}{8} \ln 2 .
$$

