Department of Mathematical Sciences
WPI
Instructor: Bogdan Doytchinov
Term D03
S OLUTIONS

MA1034	MIDTERM 50 minutes
	EXAM

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

- This is a 50 -minute exam. It has five (5) problems. It is your responsibity to make sure you have all the pages.
- Write your solutions in the space provided below each problem. If you need more space, use the back of the sheet (please indicate clearly if you do so).
- No books or notes are to be consulted.
- Calculators are NOT allowed.
- The solutions you submit must be your own work. You may not look at or copy the work of others.
- Show all your work. No credit will be given for unsupported answers.

GOOD LUCK

1. (20 pts.) Let \vec{a} and \vec{b} be two vectors such that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular. Show that $\|\vec{a}\|=\|\vec{b}\|$.

Solution.

$$
\begin{aligned}
(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}) & =0 \\
\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b} & =0 \\
\vec{a} \cdot \vec{a}-\vec{b} \cdot \vec{b} & =0 \\
\vec{a} \cdot \vec{a} & =\vec{b} \cdot \vec{b} \\
\|\vec{a}\|^{2} & =\|\vec{b}\|^{2} \\
\|\vec{a}\| & =\|\vec{b}\|^{2}
\end{aligned}
$$

2. (20 pts.) Show that if \vec{u}, \vec{v}, and \vec{w} are three-dimensional vectors such that

$$
\vec{u}+\vec{v}+\vec{w}=0
$$

then

$$
\vec{u} \times \vec{v}=\vec{v} \times \vec{w}=\vec{w} \times \vec{u} .
$$

Solution. From the equality

$$
\vec{u}+\vec{v}+\vec{w}=0
$$

we get

$$
\vec{u}=-\vec{v}-\vec{w} \quad, \vec{v}=-\vec{w}-\vec{u} \quad, \vec{w}=-\vec{u}-\vec{v} .
$$

Using the properties of the cross-product we have:

$$
\vec{u} \times \vec{v}=(-\vec{v}-\vec{w}) \times \vec{v}=-\vec{v} \times \vec{v}-\vec{w} \times \vec{v}=\vec{v} \times \vec{w}
$$

and

$$
\vec{u} \times \vec{v}=\vec{u} \times(-\vec{w}-\vec{u})=-\vec{u} \times \vec{w}-\vec{u} \times \vec{u}=\vec{w} \times \vec{u} .
$$

3. (20 pts.) Find the area of the triangle with vertices $P(2,-3,7), Q(4,-1,8)$, and $R(3,-4,9)$. Solution. This is similar to problem 4 of homework 2:

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 2,2,1\rangle \\
\overrightarrow{P R} & =\langle 1,-1,2\rangle \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =\langle 5,-3,4\rangle \\
\|\overrightarrow{P Q} \times \overrightarrow{P R}\| & =\sqrt{50}
\end{aligned}
$$

and the area is

$$
\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{P R}\|=\frac{5}{\sqrt{2}}
$$

4. (20 pts.) A plane passes through the points $A(1,4,1), B(4,7,-5)$, and $C(-1,5,8)$. A line passes through the points $P(3,-2,7)$ and $Q(6,-3,6)$. Find the intersection point of the line and the plane.
Solution. First, we find the equation of the plane:

$$
\begin{aligned}
\overrightarrow{A B} & =\langle 3,3,-6\rangle \\
\overrightarrow{A C} & =\langle-2,1,7\rangle \\
\overrightarrow{A B} \times \overrightarrow{A C} & =\langle 27,-9,9\rangle
\end{aligned}
$$

which is a normal vector. The equation of the plane is then

$$
27(x-1)-9(y-4)+9(z-1)=0
$$

or, equivalently, after simplification,

$$
3 x-y+z=0 .
$$

Second, we find the parametric equation of the line. The direction vector is

$$
\overrightarrow{P Q}=\langle 3,-1,-1\rangle,
$$

and the parametric equation is $l(t)=(3+3 t,-2-t, 7-t)$.
Plugging these back into the equation of the plane, we get

$$
3(3+3 t)-(-2-t)+(7-t)=0
$$

which gives $t=-2, x=-3, y=0, z=9$. So, the intersection point has coordinates $(-3,0,9)$
5. (20 pts.) Find the distance between the plane

$$
3 x-4 z=-9
$$

and the sphere

$$
x^{2}+y^{2}+z^{2}-2 x+4 y+4 z=0
$$

Hint: A sphere is just a bloated point.
Solution. Rewriting the equation of the sphere as

$$
(x-1)^{2}+(y+2)^{2}+(z+2)^{2}=9
$$

we see that the sphere has a center $C(1,-2,-2)$, and radius $r=3$. The distance between the plane and the the center C is

$$
\frac{|(3)(1)-(4)(-2)+9|}{\sqrt{3^{2}+4^{2}}}=\frac{20}{5}=4
$$

Diminishing this by the radius $r=3$, we obtain the distance between the plane and the sphere, $4-3=1$.

