Dept. of Math. Sei.,, WPI
MA 3831 Advanced Calculus - I
Instructor: Bogdan Doytchinov, Term CO01

Homework Assignment 1

Solutions

Problem 1. Use induction to prove that, for every positive integer n, the
number 7" — 4™ is divisible by 3.

SOLUTION.
base: For n = 1, we have

7t -4 =3.
step: Assume that for some n,

7 — 4" = 3k

for some k € IN. Then, for (n + 1), we have

7t gntl (7)- 7" — (4) -4
(3) 7"+ 4. (7" - 4"

= 3(T"+4k) =3m

where m = (7" + 4k) € IN.

Problem 2. Let P(n) denote the statement:

1
1—|—2—}—3—|—---—|—n:§(2n—}—1)2.

(a) Prove that, if P(n) is true for an integer n, then P(n + 1) is also true.
(b) Criticize the statement: “By induction, P(n) is true for all n.”

(c¢) Amend P(n) by changing the equality into an inequality that is true for
all positive integers n.



SorLuTioN. Observe that

1
g(2n+ 1)+ (n+1)
(2n+1)>+8n+8

8
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(a) Assuming that P(n) is true for some n, we have for (n + 1):

1 2(n+1)+1
1+2+3+---+n+(n+1):§(2n—|—1)2—|—(n—}—1):%,

i.e., P(n+ 1) follows from P(n).

(b) For a proof by induction, we have to chek the base of induction, P(1),
and this we did not do. Furthermore, it is easy to see that

9 1
1#£-=-(2-(1)+1)?
- CHONE)S
ie., P(1) fails.
Thus, not only is the “proof” flawed, but the statement is also wrong.

(¢) The right statement is:
1 2
1+24---+n< g(2n+1) .
Forn=1,1< %. If true for n, we have for n + 1:

1 2(n+1)+1
1+2+3+---+n+(n+1)<§(2n—|—1)2—|—(n—}—1):%.

Problem 3. For real numbers z, we defined in class [z] as the unique
integer such that

[2] < 2 < [e] + 1.

Prove the following properties:



(a) [z + n] = [2] + n for every integer n.

—[z] — 1, if z is not an integer

(b) [-=z] = { —[=], if z is an integer
(¢) [z + y] is equal to [z] + [y] or [=] + [y] + 1.

(d) [22] = [=] + [z + 5]
(e) [32] =[e] + [z + 5]+ [=+ 2]

SoLuTION
(a) Let an arbitrary integer n be given. By definition,
[e] <2< [z] +1

Adding n:
[z]l+n<z+n<[z]+n+1.

Since [z] + » is an integer, the above inequalities show that
[z +n] =[] +
(b) If z is integer, then so is —z. Then
[z] = 2, [-z] = —=.
Combining these two, we see that
[-2] = —2z = —[-=z].
Now, if z is not an integer, then
[z] < z < [z] + 1.
Multiply both sides by —1, reversing the inequality:
—[z] > —= > —[=] — 1.
This can be rewritten as
—[e] -1<e< (-[z]-1)+1,
which exactly means that

[-z] = —[=] — 1.



(¢) Again, by definition,
[2] <z <[z] +1,

[v] <y <[w]+1.
Adding these two, we get:
[z]+ 9] <z +y <[z]+[y] + 2.

Two cases are possible:

case z + y < [z] + [y] + 1. Then

[e]l+ [yl <z+y<[z]+[y] +1

and

[2] +[¥] = [z + 9]
case z +y > [z] + [y] + 1. Then
[zl + ] +1<z+y <[e]+[y] +2

and hence

[z] + [y] = [=+y] + 1.

(d) By definition,
[e] <2< [e] + 1.

Again, two cases are possible.

case [z] <z < [z]+ 1. Then

1 1
2[z] < 2z < 2[z] + 1 and [[:1:]]—|—§§m—|—§<[[z—|—]]—|—1,

hence
[22] = 2[¢] and [o + ;] = [o]
Thus, )
[26] = [o] + [= + 1.

case [z] + ; <z < [z] + 1. Then
1 3
2[z] + 1 < 2z < 2[z] + 2 and [m]]+1§m+§<[m+]]+§,

4



hence 1
[22] = 2[z] + 1 and [z + 5]] = [z] + 1.
Thus, again

1
[22] = [a] + [ + 5]
(e) This is similar to (d), but we have 3 cases to cosider:
1 1 2 2
[+ <o <[e]+ 5 [al + & <z <[] 4 2[e] + 2 <o < [a] +1.

i
Problem 4. Let S C IR, T C IR be non-empty and bounded above. Prove
or disprove:

(a) sup(S UT) = max{sup S,supT}
(b) sup(SNT) = min{sup S,sup T}

SOLUTION

(a) The equality is true. Let b := max{sup S,sup7T'}. Since every element
of SUT isin § or T, and b is the greater of the numbers sup S and
sup T, b is an upper bound of SUT.

Next, we must show that it is the least upper bound. Let a < b be
given. Since b is one of the numbers sup S and sup 7', the number a is
strictly less than one of the numbers sup S and supT. In other words,
we can find an element in S or T that is greater than a. This means
that a is not an upper bound of SUT.

(b) This one is wrong, as can be seen fron the following example. Let

S=11,2,3},T ={0,2,4}. Then

sup(SNT) =2 # 3 = min{3,4} = min{sup S,sup T'}.

Problem 5. Let z1,zjy,...,Zy,,... be a list of positive reals. Prove that if

the set
S:{z:z:kaforsomenEW}
k=1



is bounded above then there is exactly one number L with the following
property:
For each h > 0, there are at most finitely many z € S not satisfying the
inequality
L—-h<z<L.

SoLuTION
Uniqueness. Let L’ be two real numbers with the property that, for every
h >0,
L-h<z<L,andL —h<z<IL
is true for all z € S except finitely many z’s.

We will show that L’ = L by excluding the other two possibilities. As-
sume, for purposes of contoversy, that L' > L. Choose h := (L' — L)/2 > 0.
Then, by the properties of L', there can be at most finitely many z € S
for which z < L' — h, and, since L < L' — h, at most finitely many z € S
for which z < L. This contradicts the properties of L. The case L > L' is
symmetric.

Existence. S is certainly nonempty (e.g., z; € S). Since S is bounded
above, there exists sup S, denote

L :=supS.
Since L is an upper bound, then
z< Lforallze€S.

Now let A > 0 be given. Since L is the least upper bnound of S, L — h is not
an upper bound. This means there exists some zg € S, such that L — h < z.
On the other hand, zy € S means that

o

0=

k=1

for some ng € IN. Since all z are positive, then, for all n > ny,

n ng
IED SEPTI S
k=1 k=1
In other words, if some z € S violates

L-h<z<L,



then z must have the form
n
>
k=1

with n < ng. Thus, there are at most finitely many such z.



