Dept. of Math. Sci., WPI

MA 3831 Advanced Calculus - I

Instructor: Bogdan Doytchinov, Term C01

Homework Assignment 1 Solutions

Problem 1. Use induction to prove that, for every positive integer n, the number $7^n - 4^n$ is divisible by 3.

SOLUTION.

base: For n = 1, we have

$$7^1 - 4^1 = 3$$
.

step: Assume that for some n,

$$7^n - 4^n = 3k$$

for some $k \in \mathbb{N}$. Then, for (n+1), we have

$$7^{n+1} - 4^{n+1} = (7) \cdot 7^n - (4) \cdot 4^n$$

$$= (3) \cdot 7^n + 4 \cdot (7^n - 4^n)$$

$$= 3(7^n + 4k) = 3m$$

where $m = (7^n + 4k) \in I\!\!N$.

Problem 2. Let P(n) denote the statement:

$$1+2+3+\cdots+n=rac{1}{8}(2n+1)^2.$$

- (a) Prove that, if P(n) is true for an integer n, then P(n+1) is also true.
- (b) Criticize the statement: "By induction, P(n) is true for all n."
- (c) Amend P(n) by changing the equality into an inequality that is true for all positive integers n.

SOLUTION. Observe that

$$\frac{1}{8}(2n+1)^{2} + (n+1)$$

$$= \frac{(2n+1)^{2} + 8n + 8}{8}$$

$$= \frac{(2n+1)^{2} + 2(2n+1) \cdot 2 + 2^{2}}{8}$$

$$= \frac{(2n+3)^{2}}{8} = \frac{(2(n+1)+1)^{2}}{8}$$

(a) Assuming that P(n) is true for some n, we have for (n+1):

$$1+2+3+\cdots+n+(n+1)=rac{1}{8}(2n+1)^2+(n+1)=rac{2(n+1)+1}{8},$$

i.e., P(n+1) follows from P(n).

(b) For a proof by induction, we have to chek the base of induction, P(1), and this we did not do. Furthermore, it is easy to see that

$$1\neq \frac{9}{8}=\frac{1}{8}(2\cdot (1)+1)^2,$$

i.e., P(1) fails.

Thus, not only is the "proof" flawed, but the statement is also wrong.

(c) The right statement is:

$$1+2+\cdots+n<rac{1}{8}(2n+1)^2.$$

For $n = 1, 1 < \frac{9}{8}$. If true for n, we have for n + 1:

$$1+2+3+\cdots+n+(n+1)<rac{1}{8}(2n+1)^2+(n+1)=rac{2(n+1)+1}{8}.$$

Problem 3. For real numbers x, we defined in class [x] as the unique integer such that

$$\llbracket \boldsymbol{x} \rrbracket \leq \boldsymbol{x} < \llbracket \boldsymbol{x} \rrbracket + 1.$$

Prove the following properties:

- (a) ||x+n|| = ||x|| + n for every integer n.
- (b) $\llbracket -x \rrbracket = \begin{cases} -\llbracket x \rrbracket, & \text{if } x \text{ is an integer} \\ -\llbracket x \rrbracket -1, & \text{if } x \text{ is not an integer} \end{cases}$
- (c) [x + y] is equal to [x] + [y] or [x] + [y] + 1.
- (d) $[2x] = [x] + [x + \frac{1}{2}]$
- (e) $[3x] = [x] + [x + \frac{1}{3}] + [x + \frac{2}{3}]$

Solution

(a) Let an arbitrary integer n be given. By definition,

$$||x|| \le x < ||x|| + 1.$$

Adding n:

$$||x|| + n < x + n < ||x|| + n + 1.$$

Since [x] + n is an integer, the above inequalities show that

$$[\![x+n]\!]=[\![x]\!]+n$$

(b) If x is integer, then so is -x. Then

$$\llbracket \boldsymbol{x} \rrbracket = \boldsymbol{x}, \llbracket -\boldsymbol{x} \rrbracket = -\boldsymbol{x}.$$

Combining these two, we see that

$$\llbracket -\boldsymbol{x} \rrbracket = -\boldsymbol{x} = -\llbracket -\boldsymbol{x} \rrbracket.$$

Now, if x is not an integer, then

$$[\![x]\!] < x < [\![x]\!] + 1.$$

Multiply both sides by -1, reversing the inequality:

$$-[\![x]\!] > -x > -[\![x]\!] - 1.$$

This can be rewritten as

$$-[x] - 1 < x < (-[x] - 1) + 1$$

which exactly means that

$$\llbracket -\boldsymbol{x} \rrbracket = -\llbracket \boldsymbol{x} \rrbracket - 1.$$

(c) Again, by definition,

$$[\![x]\!] \le x < [\![x]\!] + 1,$$

$$[\![y]\!] \le y < [\![y]\!] + 1.$$

Adding these two, we get:

$$[\![x]\!] + [\![y]\!] < x + y < [\![x]\!] + [\![y]\!] + 2.$$

Two cases are possible:

case x + y < [x] + [y] + 1. Then

$$[\![x]\!] + [\![y]\!] \le x + y < [\![x]\!] + [\![y]\!] + 1$$

and

$$\llbracket x \rrbracket + \llbracket y \rrbracket = \llbracket x + y \rrbracket.$$

case $x + y \ge [x] + [y] + 1$. Then

$$\llbracket x \rrbracket + \llbracket y \rrbracket + 1 \leq x + y < \llbracket x \rrbracket + \llbracket y \rrbracket + 2$$

and hence

$$[x] + [y] = [x + y] + 1.$$

(d) By definition,

$$[\![x]\!] < x < [\![x]\!] + 1.$$

Again, two cases are possible.

case $\llbracket x \rrbracket \leq x < \llbracket x \rrbracket + \frac{1}{2}$. Then

$$2[x] \le 2x < 2[x] + 1 \text{ and } [x] + \frac{1}{2} \le x + \frac{1}{2} < [x+] + 1,$$

hence

$$\llbracket 2x
rbracket = 2 \llbracket x
rbracket$$
 and $\llbracket x + rac{1}{2}
rbracket = \llbracket x
rbracket.$

Thus,

$$\llbracket 2x
rbracket = \llbracket x
rbracket + \llbracket x + rac{1}{2}
rbracket.$$

case $\llbracket x \rrbracket + \frac{1}{2} \le x < \llbracket x \rrbracket + 1$. Then

$$2\llbracket x
rbracket + 1 \leq 2x < 2\llbracket x
rbracket + 2 ext{ and } \llbracket x
rbracket + 1 \leq x + rac{1}{2} < \llbracket x +
rbracket + rac{3}{2},$$

hence

$$[\![2x]\!] = 2[\![x]\!] + 1 \text{ and } [\![x + \frac{1}{2}]\!] = [\![x]\!] + 1.$$

Thus, again

$$\llbracket 2x
rbracket = \llbracket x
rbracket + \llbracket x + rac{1}{2}
rbracket.$$

(e) This is similar to (d), but we have 3 cases to cosider:

$$\llbracket x
rbracket + \leq x < \llbracket x
rbracket + rac{1}{3}, \llbracket x
rbracket + rac{1}{3} \leq x < \llbracket x
rbracket + rac{2}{3}, \llbracket x
rbracket + rac{2}{3} \leq x < \llbracket x
rbracket + 1.$$

Problem 4. Let $S \subset I\!\!R, \, T \subset I\!\!R$ be non-empty and bounded above. Prove or disprove:

- (a) $\sup(S \cup T) = \max\{\sup S, \sup T\}$
- (b) $\sup(S \cap T) = \min\{\sup S, \sup T\}$

SOLUTION

(a) The equality is true. Let $b := \max\{\sup S, \sup T\}$. Since every element of $S \cup T$ is in S or T, and b is the greater of the numbers $\sup S$ and $\sup T$, b is an upper bound of $S \cup T$.

Next, we must show that it is the *least* upper bound. Let a < b be given. Since b is one of the numbers $\sup S$ and $\sup T$, the number a is strictly less than one of the numbers $\sup S$ and $\sup T$. In other words, we can find an element in S or T that is greater than a. This means that a is not an upper bound of $S \cup T$.

(b) This one is wrong, as can be seen fron the following example. Let $S = \{1, 2, 3\}, T = \{0, 2, 4\}$. Then

$$\sup(S\cap T)=2\neq 3=\min\{3,4\}=\min\{\sup S,\sup T\}.$$

Problem 5. Let $x_1, x_2, \ldots, x_n, \ldots$ be a list of *positive* reals. Prove that if the set

$$S = \left\{ z : z = \sum_{k=1}^{n} x_k ext{ for some } n \in I\!\!N
ight\}$$

is bounded above then there is exactly one number L with the following property:

For each h > 0, there are at most finitely many $z \in S$ not satisfying the inequality

$$L-h < z < L$$
.

Solution

Uniqueness. Let L' be two real numbers with the property that, for every h > 0,

$$L-h \le z \le L$$
, and $L'-h \le z \le L'$

is true for all $z \in S$ except finitely many z's.

We will show that L'=L by excluding the other two possibilities. Assume, for purposes of contoversy, that L'>L. Choose h:=(L'-L)/2>0. Then, by the properties of L', there can be at most finitely many $z\in S$ for which z< L'-h, and, since L< L'-h, at most finitely many $z\in S$ for which $z\leq L$. This contradicts the properties of L. The case L>L' is symmetric.

Existence. S is certainly nonempty (e.g., $x_1 \in S$). Since S is bounded above, there exists $\sup S$, denote

$$L := \sup S$$
.

Since L is an upper bound, then

$$z < L$$
 for all $z \in S$.

Now let h > 0 be given. Since L is the *least* upper bound of S, L - h is not an upper bound. This means there exists some $z_0 \in S$, such that $L - h < z_0$.

On the other hand, $z_0 \in S$ means that

$$z_0 = \sum_{k=1}^{n_0}$$

for some $n_0 \in \mathbb{N}$. Since all x_k are positive, then, for all $n \geq n_0$,

$$\sum_{k=1}^n \ge \sum_{k=1}^{n_0} = z_0 > L - h.$$

In other words, if some $z \in S$ violates

$$L-h < x \leq L$$
,

then z must have the form

$$z = \sum_{k=1}^n$$

with $n < n_0$. Thus, there are at most finitely many such z.