Dept. of Math. Sci., WPI
MA 3831 Advanced Calculus - I
Instructor: Bogdan Doytchinov, Term C01

Homework Assignment 1
Due Tuesday, January 23, 2001

Problem 1. Use induction to prove that, for every positive integer \(n \), the number \(7^n - 4^n \) is divisible by 3.

Problem 2. Let \(P(n) \) denote the statement:

\[
1 + 2 + 3 + \cdots + n = \frac{1}{8}(2n + 1)^2.
\]

(a) Prove that, if \(P(n) \) is true for an integer \(n \), then \(P(n + 1) \) is also true.

(b) Criticize the statement: “By induction, \(P(n) \) is true for all \(n \).”

(c) Amend \(P(n) \) by changing the equality into an inequality that is true for all positive integers \(n \).

Problem 3. For real numbers \(z \), we defined in class \([z]\) as the unique integer such that

\[
[z] \leq z < [z] + 1.
\]

Prove the following properties:

(a) \([z + n] = [z] + n \) for every integer \(n \).

(b) \([-z] = \begin{cases} -[z], & \text{if } z \text{ is an integer} \\ -[z] - 1, & \text{if } z \text{ is not an integer} \end{cases}\)

(c) \([z + y]\) is equal to \([z] + [y]\) or \([z] + [y] + 1\).

(d) \([2z] = [z] + [z + \frac{1}{2}]\)

(e) \([3z] = [z] + [z + \frac{1}{3}] + [z + \frac{2}{3}]\)
Problem 4. Let $S \subset \mathbb{R}$, $T \subset \mathbb{R}$ be non-empty and bounded above. Prove or disprove:

(a) $\sup(S \cup T) = \max\{\sup S, \sup T\}$

(b) $\sup(S \cap T) = \min\{\sup S, \sup T\}$

Problem 5. Let $x_1, x_2, \ldots, x_n, \ldots$ be a list of positive reals. Prove that if the set

$$S = \left\{ z : z = \sum_{k=1}^{n} x_k \text{ for some } n \in \mathbb{N} \right\}$$

is bounded above then there is exactly one number L with the following property:

For each $h > 0$, there are at most finitely many $z \in S$ not satisfying the inequality

$$L - h \leq z \leq L.$$