Dept. of Math. Sci., WPI

MA 3831 Advanced Calculus - I

Instructor: Bogdan Doytchinov, Term C01

Homework Assignment 1

Due Tuesday, January 23, 2001

Problem 1. Use induction to prove that, for every positive integer n, the number $7^n - 4^n$ is divisible by 3.

Problem 2. Let P(n) denote the statement:

$$1+2+3+\cdots+n=rac{1}{8}(2n+1)^2.$$

- (a) Prove that, if P(n) is true for an integer n, then P(n+1) is also true.
- (b) Criticize the statement: "By induction, P(n) is true for all n."
- (c) Amend P(n) by changing the equality into an inequality that is true for all positive integers n.

Problem 3. For real numbers x, we defined in class [x] as the unique integer such that

$$[\![x]\!] \le x < [\![x]\!] + 1.$$

Prove the following properties:

- (a) [x+n] = [x] + n for every integer n.
- (b) $\llbracket -x \rrbracket = \begin{cases} -\llbracket x \rrbracket, & \text{if } x \text{ is an integer} \\ -\llbracket x \rrbracket -1, & \text{if } x \text{ is not an integer} \end{cases}$
- (c) $\llbracket x + y \rrbracket$ is equal to $\llbracket x \rrbracket + \llbracket y \rrbracket$ or $\llbracket x \rrbracket + \llbracket y \rrbracket + 1$.
- (d) $[2x] = [x] + [x + \frac{1}{2}]$
- (e) $[3x] = [x] + [x + \frac{1}{3}] + [x + \frac{2}{3}]$

Problem 4. Let $S \subset I\!\!R, \, T \subset I\!\!R$ be non-empty and bounded above. Prove or disprove:

- (a) $\sup(S \cup T) = \max\{\sup S, \sup T\}$
- (b) $\sup(S \cap T) = \min\{\sup S, \sup T\}$

Problem 5. Let $x_1, x_2, \ldots, x_n, \ldots$ be a list of *positive* reals. Prove that if the set

$$S = \left\{z: z = \sum_{k=1}^n x_k ext{ for some } n \in I\!\!N
ight\}$$

is bounded above then there is exactly one number L with the following property:

For each h > 0, there are at most finitely many $z \in S$ not satisfying the inequality

$$L-h \leq z \leq L$$
.