Department of Mathematical Sciences

WPI

Instructor: Bogdan Doytchinov

Term C01 SOLUTIONS

MA3831 TEST 1 25 minutes

Problem	Points	Score
1	15	
2	15	
3	15	
4	5	
Total	50	

- This is a 25-minute test. The test has four (4) problems. It is your responsibity to make sure you have all the pages.
- Write your solutions in the space provided below each problem. If you need more space, use the back of the sheet (please indicate clearly if you do so).
- No books or notes are to be consulted.
- Calculators are NOT allowed.
- The solutions you submit must be your own work. You may not look at or copy the work of others.
- Show all your work. No credit will be given for unsupported answers.

1. (15 pts.) Use induction to show that, for every $n \in \mathbb{N}$, the number

$$n^3 + (n+1)^3 + (n+2)^3$$

is divisible by 9.

SOLUTION.

base: for n = 1, we have

$$n^3 + (n+1)^3 + (n+2)^3 = 1 + 8 + 27 = 36 = (9)(4),$$

so it is divisible by 9.

step: if the statement is true for n, what can we say for (n+1)? By the inductional hypothesis,

$$n^3 + (n+1)^3 + (n+2)^3 = 9k$$
 for some $k \in \mathbb{N}$.

Then, for (n+1),

$$(n+1)^3 + (n+2)^3 + (n+3)^3$$
= $(n+1)^3 + (n+2)^3 + n^3 + 9n^2 + 27n + 27$
= $(n^3 + (n+1)^3 + (n+2)^3) + (9n^2 + 27n + 27)$
= $9k + 9(n^2 + 3n + 3)$
= $9m$,

where $m = k + n^2 + 3n + 3 \in I\!\!N$.

2. (15 pts.) We will say that a natural number n is even, if n = 2k for some $k \in \mathbb{N}$. We will say that a natural number n is odd, if (n + 1) is even. Use induction to show that every natural number is either even or odd (in the sense of the above definition).

SOLUTION.

base: for n = 1, we have

$$n+1=1+1=2(1),$$

so 1 is odd.

step: Given that n is either even or odd, we want to show that (n+1) is even or odd. case n is odd. This, by the definition given, means (n+1) is even.

case n is even. Then, n = 2k for some $k \in \mathbb{N}$, and for (n + 1), we can write,

$$(n+1)+1=2k+2=2(k+1).$$

This means that (n+1)+1 is even, so (n+1) is odd.

3. (15 pts.) Let A be a nonempty set of real numbers that is bounded below and let $s=\inf A$. Let

$$B = \{-2x : x \in A\}.$$

Prove that

$$\sup B=-2s.$$

SOLUTION. First, we show that -2s is an upper bound for B. Let y be an arbitrary element of B. Then y = -2x for some $x \in A$. Since s is a lower bound for A,

$$s \leq x$$

and multiplying both sides by -2,

$$-2s \geq -2x = y$$
.

Since $y \in B$ was arbitrary, this shows that -2s is indeed an upper bound of B.

Next, we must show that -2s is the *least* of all upper bounds. Let b < -2s. Then -b/2 > s. Since s is the *greatest* lower bound of A, -b/2 cannot be a lower bound of A, and hence there exists an $x \in A$ such that x < -b/2. Denote y = -2x. Then

$$y=-2x>b,$$

and hence b is not an upper bound of B.

Thus, we see that anything smaller than -2s is not an upper bound of B, while -2s is an upper bound. This exactly means that -2s is the least upper bound of B, i.e.

$$-2s = \sup B$$
.

4. (5 pts.) Let E be a nonempty subset of an ordered set (not necessarily of real numbers). Suppose α is a lower bound of E and β is an upper bound of E. Show that $\alpha \leq \beta$.

SOLUTION. Since E is non-empty, we can (and do) choose an element $x \in E$. Since α and β are a lower and upper bound respectively, we have

$$\alpha \leq x, \ x \leq \beta.$$

By the transitivity property of order,

$$\alpha \leq \beta$$
.