Dept. of Math. Sei.,, WPI
MA 3831 Advanced Calculus - 2
Instructor: Bogdan Doytchinov, Term D01

Homework Assignment 1

Solutions

Problem 1. Which of the following functions defined for pairs of numbers
z and y are metrics on IR?

(a) d(z,y) = || + |y]
(b) d(z,y) = (z —y)?

(c) d(z,y) =]z~
(d) d(z,y) = min{1, |z - y|}
(e) d(z,9) = =2

(f) d(z,y)=1ifz #yand d(z,y) =0if z = y.

Solution. To verify that d : X x X — IR is a metric, we need to check
three conditions:

(i) d(z,y) =0 if and only if z = y,
(i1) d(z,y) =d(y,z) forall z,y € X,
(ii1) d(z,z) < d(z,y)+ d(y,2) for all z,y,z € X.

(Remark: from these, it follows that d(z,y) > 0 for all z,y € X .)
With this in mind, we see, for the given functions:

(a) dis not a metric, (i) is violated: d(1,1) =2 # 0.

(b) dis not a metric, (iii) is violated: forz =0,y =1, z = 2:
d(z,z)=4>1+1=d(z,y) +d(y, 2).

(c) dis a metric. The conditions (i) and (ii) are obvious, for (iii) we have:

d(z,2) = \Jlz—2l=y/le-9)+@-2)|<\le—yl+|z 2|

< Ve-yl+2/le—slyflv— 2+ 1y
= Vle—yl+/ly-4

= d(z,y)+d(y,2).




(d) dis a metric - this follows from Problem 3.
(e) dis a metric - this follows from Problem 2.

(f) d is a metric, and this can be easily verified (all three conditions are
obvious). It is called the discrete metric. A metric space which has
the discrete metric is called a disctrete metric space.

Problem 2. Let (X, d) be a metric space. Define a functione : X XX — R
by

d(z,y)
1+d(z,y)
Prove that e is a metric, that e(z,y) < d(z,y), and that e(z,y) < 1 for all
z,y€ X.
Solution.The inequalities e(z,y) < d(z,y), and e(z,y) < 1 forallz,y € X
are obvious, conditions (i) and (ii) are also immediate from the definition.
The only thing that needs proof is (iii), the triangular inequality.

We argue as follows. For r» > 0, denote

e(m:y) =

r
G(r)= .
=1
From Calculus,
1
GI(’P) = m >0, forallr>0.

In other words, the function G is strictly increasing on the interval [0, 0o).
Let z,y,z € X be given. Then

e(z,z) = G(d(z,2))
< G(d(=z,y)+d(y, 2))

d(z,y) + d(y, 2)
1+ d(z,y) + d(y, 2)

_ d(z,y) d(y, z)
1+d(z,y)+d(y,z) 1+d(z,y)+d(y,2)
d(z,y) d(y, 2)

IA

1+d(z,y) 1+d(y,2)
= e(z,y)+e(y,2).



Problem 3. Let (X, d) be a metric space. Define a functione : X x X — R
by
e(z,y) = min{l, d(z, y)}.

Prove that e is a metric, that e(z,y) < d(z,y), and that e(z,y) < 1 for all
z,y€ X.

Solution. The inequalities e(z,y) < d(z,y),and e(z,y) < lforallz,y € X
are obvious, conditions (i) and (ii) are also immediate from the definition.
The only thing that needs proof is (iii), the triangular inequality. Let
z,y,z € X be given. Then

e(z,z) = min{l,d(z,2)} < min{l,d(z,y) + d(y, 2)}
< min{l,d(z,y)} + min{l1, d(y, 2)}
= e(z,y) +e(y, 2).

Problem 4. (Product Spaces) Given two metric spaces we can form a
product metric space. Let (X1, d;) and (X3, d2) be metric spaces. The set

Xl X Xg = {(231,232) 1xy € Xl,mz € Xg}
is called the Cartesian product of X; and X,. For
u=(21,22) and v = (y1,¥2) in X3 X Xy

define
d(u,v) = di(z1,91) + da(z2,92).

(a) Prove that d is a metric on X; x X».

(b) Let X1, Xy = IR, d; = dy be the usual euclidean metric on IR. Calculate
d(u,v), where u = (0,1) and v = (-3, 4) are points in R? = R x R.

Solution.

(a) We check the three conditions:



(1) Since both d; and dj attain only non-negative values, d(u,v) = 0 if
and only if both d;(z1,y1) = 0 and da(z2,y2) = 0. This happens
exactly when z; = y; and z3 = ¥, i.e., when u = v.

(i1) this one is immediate from the formula.

(iii) (triangular inequality) Given u = (z1,22), v = (y1,%2), w =
(Zl,ZZ) € X1 x Xy,

d(u, w) = dl(:zzl, Zl) —|— dz(mg, Zz)
< di(z1,91) + di(y1, 21) + da(z2, y2) + da(y2, 22)
= d(u,v)+ d(v,w)

(b) d(u,v) =0 — (~3)| + |1 — 4| = 6.

Problem 5. The book defines 29 € X as an accumulation point of a set
A if every neighborhood of zg contains infinitely many points of A. Shows
that this definition is equivalent to each of the following:

(a) z¢ is an accumulation point of A if for every € > 0 the set

AN B((IZO,E) \ {20}
is nonempty.

(b) =z is an accumulation point of A if there is a sequence of points z,, € A
so that z,, # 2o and z,, — zo.

c) zg is an accumulation point of A if 29 € A and z( is not an isolated
b
point of A.

(d) =zo is an accumulation point of A if z¢ is not an interior point of (X \

A) U {zo}.

Solution. Let’s denote by (e) the statement of the definition:

(e) zo is an accumulation point of A if every neighborhood of zo contains
infinitely many points of A.

The proof of the equivalence will proceed along the following scheme:

() = (@)= (b) = (¢), (a)= ()= (a), (a)=(d) = (a)



(e)=(a) Let an € > 0 be given. B(zo,¢) is a neighborhood of zg, and in
it we can find infinitely many points of A. In particular, we can find
a point y € A such that y # z¢. Then y € AN B(zo,¢) \ {zo}, and
hence the set AN B(zo,€) \ {0} is non-empty.

(a)=(b) For every n € IN, we can find a point

2, € AN B (mo, %) \ {zo}.

Then zq,z9,...,Zy,,...is the desired sequence.

(b)=(e) Let G be a neighborhood of z¢, and let z;,z3,...,2,,... be a
sequence as described in (b). Since ,, — #¢, we can find an N so that
2z, € G for all n > N. Then the set

{z, :n> N}
is an infinite set of points of A and is also a subset of G.

(a)=(c) For every € > 0, the open ball B(zg,€) contains points from A.
Hence, zg cannot be an isolated point. Moreover, from the definition
of closure, it is immediate that zo € A.

(c)=(a) By the definition of closure, A = AU A’. If 25 € A, but zo ¢ A4,
then z¢ is an accumulation point in the sense of (a).
If, on the other hand, zg € A, then, we use the fact that it is not an
isolated point. Then, for every € > 0, the open ball B(z,€) contains
points from A, different from zy. Thus,

B(zo,€) N A\ {zo} # 0,
which is exactly the condition in (a).

(a)=(d) Let’s reason by contradiction. Suppose, for purposes of contro-
versy, that zo ¢s an interior point of (X \ A) U {zo}. Then we can
find an € > 0 so that B(zg,e) C (X \ A) U {zo}. This is equivalent to
saying that

B(zo,€) N A\ {20} =0,

which yields the desired contradiction.



(d)=(a) Along with the reasoning in the previous paragraph, z¢ not being
an interior point means that

B(zo,e) N A\ {zo} # 0,

which is exactly the condition in (a).

Problem 6. Show, in a general metric space, that the open ball is open and
that the closed ball is closed. Give an example of a metric space in which a
closed ball Bz, €] is not necessarily the closure of the open ball B(z,€).
Solution. Let (X, d) be a general metric space, and let € X, ¢ > 0 be
given.

First we will show that the open ball B(z,¢€) is open. To this end, we
must show that every point y € B(z,€) is an interior point of B(z,¢). In
other words, we must produce a § > 0 such that B(y,d) C B(z,¢e). Here is
how we do it.

Since y € B(z,¢€), we have d(z,y) < €. Choose é = ¢ — d(z,y). Then,
for every z € B(y, ), we have

d(z,z) < d(z,y) +d(y,2) < d(z,y) +d =¢,

and hence z € B(z,¢). This exactly means that B(y,d) C B(z,¢).

Next, we show that the closed ball Bz, €] is closed. Since a set is closed
if and only if its complement is open, it will be enough to show that its
complement, X \ B[z,¢], is open. To this end, we must show that every
point y € X \ Bz, €] is an interior point of X \ B[z,¢]. In other words, we
must produce a é > 0 such that B(y,d) C X \ B[z, €]. Here is how we do it.

Since y € X \ B[z, €], we have d(z,y) > €. Choose § = d(z,y) —e. Then,
for every z € B(y,d), we have

d(z,y) < d(z,2) + d(z,y),
d(z,z) > d(z,y) — d(z,y) > d(z,y) - 6 =¢,

and hence z € X \ B[z, €]. This exactly means that B(y,é) C X \ B[z, ¢].
Finally, we note that a closed ball B[z, €] is not necessarily the closure of

the open ball B(z,€). For example, let X = IN with the usual real metric.
Then B(1,1) = {1}, and B(1,1) = {1}, but B[1,1] = {1, 2}.




Problem 7. Let X denote the set of points
{0} U{1/k:k=1,2,3,...}
in IR furnished with the usual real metric. Answer the following questions:
(a) Which points are isolated in X?
(b) Which sets are open and which sets are closed?
(c¢) Which sets are both open and closed?
(d) Is X bounded?
(e) Which sets have a nonempty boundary?
(f) Does X have any accumulation points?
(g) Describe all dense subsets of X.
(h) Is the closure of the open ball B(z, €) necessarily the closed ball B[z, ]?
Solution.
(a) All the points of the form 1/k for k£ € IN.

(b) There are two types of closed sets. First, all finite sets are closed.
Second, all infinite sets containing the point 0 are closed.

The open sets are the complements of the closed sets. Thus, they too
can be classified into two types. First all cofinite sets (i.e. sets with
finite complements), and second, all the sets that do not contain the
point 0.

(¢) Two types of sets are both open and closed: first, all finite sets that
do not contain the point 0, and, second, all the cofinite sets that do
contain 0.

(d) Yes,itis. Forallz,y€ X, |z —y| < 1.

(e) Observe that each point of the form 1/k for some k € IN is an open set.
Thus, the only point in X that can possibly be a boundary point for
a set, is the point 0.

A set has a non-empty boundary exactly in the following two cases:



e it contains 0 and its complement is infinite.
e it is infinite and it does not contain 0.

es, the point 0 is an accumulation point. other points are no
f) Yes, th int 0 i lati int. All oth int t
accumulation points (because they are isolated).

(g) There are exactly two dense subsets of X: first, X itself, and second,
theset {1/k:k=1,2,3,...}.

(h) No. B(1,1/2) = {1}, and B(1,1/2) = {1}, but B[1,1/2] = {1,1/2}.



