Dept. of Math. Sei.,, WPI
MA 3831 Advanced Calculus - 2
Instructor: Bogdan Doytchinov, Term D01

Homework Assignment 2
Solutions

Problem 1. Let f be defined on the set containing the points
0,1,1/2,1/4,...,1/2™, ...

only. What values can you assign at these points that will make this function
continuous everywhere where it is defined?
Solution. Since the points

1,1/2,1/4,...,1/2", ...

are isolated, f will be continuos at these points, no matter how we define
it. The only accumulation poit is 0. Thus, the function will be continuous
everywhere where it is defined, if and only if it is continuous at 0. The
necessary and sufficient condition for this is

lim f(1/n) = £(0).

n—oo

Conclusion: The values

F), f(1/2),..., f(1/2™),...

should form a converging sequence, and f(0) should equal the limit of this
sequence.

Problem 2. A function f : [a,b] — IR is said to be Lipshitz if there is a
positive number M so that |f(z) — f(y)| < M|z — y| for all z,y € [a,b].
Show that a Lipshitz function must be continuous. Is the converse true?
Soultion. Given z¢ € [a,b] and € > 0, choose é := /M. Then, whenever
z € [a,b]N (2o — 6,20 + 8), we have

|f(z) — f(=o0)| < M|z — 20| < Md =e.



This exactly means that f is continuous on [a, b].

The converse is not true. For example, the function f : [-1,1] —» R,
given by f(z) = /z, is continuous on [—1, 1] but does not satisfy the Lipshitz
condition. For z # y we have:

N e |z — y| _
|f(2) = f(y)| = |Vz — ¥yl Vo 1 ooy 4 U

There is no such constant M that

1
<M
Va? + Yzy+ v

for all z,y € [—1, 1]; by taking  and y close to 0, we can make this expression
arbitrarily large.

Problem 3. Let (X, d) be a discrete space.
(a) What functions f : X — IR are continuous everywhere?
(b) What functions f : IR — X are continuous everywhere?

Soluiton. Recall that a mapping is continuous everywhere if and only if
the pre-image of every open set is open, or, equvalently,if the pre-image of
every closed set is closed. Also, recall that in a discrete metric space all sets
are both open and closed. In view of this, we immediately see that

(a) All functions f: X — IR are continuous everywhere.

(b) A function f : R — X is continuous everywhere if and only if it is
constant. Indeed, let zo := f(0). Then the set f~'({zo}) is a subset
of IR which is open, closed and nonempty. Thus

7' ({zo}) = R,
or, in other fords, f(t) = f(0) for all ¢ € R.



Problem 4. Let f : IR> — IR be defined by
$%$2

4 2
z] + x5

f(:El, :ﬂz) = f(O, 0) =0.

Show that lim,_,o f(z, mz) = 0 for every m € IR, but f is discontinuous at
(0,0).

Solution. For every m € IR, we have

z’mz . me

lim f(z, mz) = lim =0.

z—0 z—0 24 + m2z2 = 250 z2 + m?2
On the other hand, for the sequence
n)  (n 1 1
(zg ),mg )) = (— —2) , n=1,2,...,

)
nn

we have W ()
nlg{.lo(ml 2y ) = (0,0)
but

lim f(e{,2{) = 5 # 7(0,0)

n— oo

Problem 5. Let (X,d) be a metric space. Prove that d is continuous on
X x X, where X X X is furnished with the product metric.

Solution. Let p denote the product metric on X x X, i.e., for (z1,z2) €
X x X, and (y1,¥2) € X x X,

p((ml, :132), (yla yZ)) = d(ml, yl) + d(mz, ?/2)-

We will show that d is uniformly continuous on X x X.

Indeed, let an € > 0 be given, and choose § = £. Then, whenever
(21,22) € X X X and (y1,y2) € X X X are such that p((z1, 22), (y1,%2)) < 6,
we have

|d(z1,22) — d(y1,92)| = |d(z1,22) — d(y1,22) + d(y1,22) — d(y1, y2)|
(21, z2) — d(y1,22)| + |d(y1,22) — d(y1, y2)|
d(z1,y1) + d(z2,92)

= p((z1,22),(y1,92)) < b =€.



Problem 6. Let (X, d) be a metric space and let A be a nonempty subset
of X. Define f: X — IR by

f(z) = dist(z, A) = inf{d(z,y) : y € A}.
(a) Show that |f(z) — f(y)| < d(z,y) forall z,y € X.
(b) Show that f defines a continuous real-valued function on X.
(c) Show that {z € X : f(z) = 0} = A.
(d) Show that {z € X : f(z) > 0} = int(X \ A).

(e) Show that, unless X conains only a single point, there exists a contin-
uous real-valued function defined on X that is not constant.

(f) If E C X is closed and z¢ ¢ E, show that there is a continuous real-
valued function g on X so that g(zo) =1 and g(z) =0 for all z € E.

(g) If E and F are disjoint closed subsets of X, show that there is a con-
tinuous real-valued function g on X so that g(z) = 1 for all ¢ € F and
g(z)=0forall z € E.

(h) If E and F are disjoint closed subsets of X, show that there are disjoint
open sets G; and G5 so that E C G; and F C Gs.

(1) In the special case where X is the real line with the usual metric and
K denotes the Cantor ternary set, sketch the graph of the function
f(z) = dist(z, K).

(J) Give an example of a metric space, a point zo, and a set A C X so that
dist(zo, A) = 1 but so that d(z, z¢) # 1 for every z € A.

Solution.
(a) Let z,y € X be given. For all z € A, we have:
f(z) = dist(z, A) = inf{d(z,{) : ( € A} < d(z,z) < d(z,y)+ d(y, 2).
Taking an infimum over z € A, we get
f(z) < d(=z,y)+ f(y)-

By symmetry,
f(y) < d(z,y) + f(=).



Combining these two, we get
7 (z) - f(y)l < d(z,9).

(b) From (a), we see immediately that f is actually uwniformly continuos
(and even Lipshitz continuous) on X: given ¢ > 0, we can choose
d = e. Then, whenever d(z,y) < d, we have |f(z) — f(y)| < e.

(c) First of all, observe that {z € X : f(z) = 0} = f~1({0}). Since f is
continuous, {z € X : f(z) = 0} is closed. Next, clearly, for z € A,
f(z) = 0. Thus, { € X : f(z) = 0} is a closed set that includes A.
Since A is the smallest closed set that includes A, we see that

{zeX:f(z)=0}D A

To show the equality, we must now check that, converslely, every point
of Aisalsoin {z € X : f(z) = 0}. Let an z € A be given. Then there
exists a sequence z,, — ¢, with z,, € A for all n. Since f is continuous,
we have:

fle) = Jlimg, f(on) = Jim, 0=0.

(d) For this, we will use the result of (c), as well as the properties of pre-
images. Since f attains only non-negative values,

(o0, 0) = f1({0}) =4
and hence,
{geX:f(2)>0} = f7((0,00)=f"(R\ (~00,0])
=X\ F0p = X\A= [(x\4).

(e) Let z,y € X and z # y. Consider the function
h(z) = d(z, z) = dist(z, {z}).

This is a continuous function, and h(y) = d(z,y) > 0 = h(z), so it is
not a constant function.

(f) Let
f(z) = dist(z, E).



Since E is closed, and zo ¢ E, (d) ensures that f(zo) > 0, while
f(z) = 0 exactly when z € E. Put

(g) Put
dist(z, E)

9(z) = dist(z, E) + dist(z, F)’
Since E and F are disjoint closed subsets of X, the denominator is

never 0, so g is well-defined and continuous. It is straightforward to
verify that g(z) = 1for all z € F and g(z) =0 for all z € E.

(h) Let g be the function introduced in g. Take
Gy :=fT1((-00,1/2)), ,G2:=f"1((1/2,00)).

(1) In the special case where X is the real line with the usual metric and
K denotes the Cantor ternary set, sketch the graph of the function
f(z) = dist(z, K) - we did this in class.

(j) Take X = IR, but with the following metric:

]} 0, ife=y
d(m’y)_{ l+le—y|, ife#y.

Take zg = 0, A = X \ {0}. Then A is closed (in this metric) and
dist(zo, A) = 1, while d(z,zo) > 1 for every z € A = A.



