Dept. of Math. Sci., WPI

MA 3832 Advanced Calculus - 2

Instructor: Bogdan Doytchinov, Term D01

Homework Assignment 3 Soultions

Problem 1. Consider the set C[0,1] of continuous functions on [0,1] with the two metrics:

$$egin{array}{lcl} d_1(x,y) &=& \max_{0 \leq t \leq 1} |x(t) - y(t)| \ d_2(x,y) &=& \int_0^1 |x(t) - y(t)| \, dt. \end{array}$$

Let B_1 be an open ball in $(C[0,1],d_1)$ and let B_2 be an open ball in $C[0,1],d_2)$.

- (a) Is B_1 open in $(C[0,1], d_2)$?
- (b) Is B_2 open in $(C[0,1], d_1)$?

SOLUTION.

(a) B_1 is not open in $(C[0,1],d_2)$. We can reason by contradiction. Suppose, for purposes of controversy, that B_1 is open in the metric d_2 , and let $y \in B_1$. Then, for every sequence $x_n \in C[0,1]$ for which $d_2(x_n,y) \to 0$, there must exist an N such that, for all $n \geq N$, $x_n \in B_1$. Consider now the sequence of functions $x_n \in C[0,1]$ given by the formula

$$oldsymbol{x_n(t)} = \left\{egin{array}{ll} y(t) + \sqrt{n} \left(1 - |2noldsymbol{x} - 1|
ight), & ext{for } 0 \leq oldsymbol{x} \leq 1/n, \ y(t), & ext{for } oldsymbol{x} > 1/n. \end{array}
ight.$$

Then $d_2(x_n, y) = 1/(2\sqrt{n}) \to 0$. On the other hand, $d_1(x_n, y) \to \infty$, so B_1 can contain at most finitely many of the x_n 's.

(b) B_2 is open in $(C[0,1], d_1)$. Indeed, observe that, for any two functions $x, y \in C[0,1]$,

$$egin{array}{lcl} d_2(x,y) &=& \int_0^1 |x(t)-y(t)| \, dt \ &\leq & \int_0^1 \max_{0 \leq s \leq 1} |x(s)-y(s)| \, dt = \int_0^1 d_1(x,y) dt = d_1(x,y). \end{array}$$

This shows that the identity mapping id : $(C[0,1], d_1) \rightarrow (C[0,1], d_2)$ is Lipschitz continuous (and, in particular, continuous). B_2 is open in $(C[0,1], d_2)$ (given), therefore, its pre-image $B_2 = \mathrm{id}^{-1}(B_2)$ is open in $(C[0,1], d_1)$.

Problem 2. Let $C^1[a,b]$ consist of the continuously differentiable functions on [a,b]. Define for $f,g\in C^1[a,b]$

$$d(f,g) = \max_{a < t < b} |f(t) - g(t)| + \max_{a < t < b} |f'(t) - g(t')|.$$

- (a) Prove that d is a metric.
- (b) Let $D: C^1[a,b] \to C[a,b]$ be defined by D(f) = f'. Prove that D is continuous. (Here, as usual, C[a,b] has the sup metric).

SOLUTION.

(a) The only non-trivial property to check is the triangle inequality, the other properties of metric are obviously satisfied. Let $f, g, h \in C^1[a, b]$ be given. In class, we proved the triangle inequality for the sup-norm:

$$\max_{a \leq t \leq b} |f(t) - h(t)| \leq \max_{a \leq t \leq b} |f(t) - g(t)| + \max_{a \leq t \leq b} |g(t) - h(t)|.$$

This, applied to the derivatives, gives also

$$\max_{a \leq t \leq b} |f'(t) - h'(t)| \leq \max_{a \leq t \leq b} |f'(t) - g'(t)| + \max_{a \leq t \leq b} |g'(t) - h'(t)|.$$

Adding the two inequalities, we get

$$d(f,h) < d(f,g) + d(g,h).$$

(b) For this part of the problem, let's denote

$$ho(f,g) = \max_{a < t < b} |f(t) - g(t)|, \qquad ext{for } f,g \in C[a,b].$$

Then, for every two functions $f, g \in C^1[a, b]$, we have

$$egin{array}{lcl}
ho(D(f),D(g)) &=& \max_{a \leq t \leq b} |f'(t)-g'(t)| \ &\leq & \max_{a < t < b} |f(t)-g(t)| + \max_{a < t < b} |f'(t)-g(t')| = d(f,g). \end{array}$$

This shows that $D:C^1[a,b]\to C[a,b]$ is Lipschitz continuous (and therefore, continuous).

Problem 3. Let C[0,1] consist of the continuous functions on [0,1] and furnished with the metric

$$d(f,g)=\int_0^1 |f(t)-g(t)|\,dt.$$

Define $T: C[0,1] \to I R$ by

$$T(f) = \int_0^1 f(t) dt.$$

Is T continuos?

Solution. Yes, T is continuous, and even Lipschitz continuous with a Lipschitz constant 1. For every $f, g \in C[0, 1]$,

$$egin{array}{lll} |T(f)-T(g)| &=& |\int_0^1 f(t) \ dt - \int_0^1 g(t) \ dt| = |\int_0^1 (f(t)-g(t)) \ dt| \ &\leq & \int_0^1 |f(t)-g(t)| \ dt = d(f,g). \end{array}$$

Problem 4. Let a function $f: \mathbb{R} \to \mathbb{R}$ be defined by setting $f(1/n) = c_n$ for $n = 1, 2, 3, \ldots$ where c_1, c_2, \ldots is a given sequence, and elswhere f(x) = 0. Find a condition on that sequence so that f'(0) exists.

Solution. By the definition of derivative, f'(0) is defined as the following limit:

$$\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{f(x)}{x},$$

which must exist.

By the definition of f,

$$rac{f(x)}{x} = \left\{ egin{array}{ll} nc_n, & ext{if } x = 1/n ext{ for some } n = 1, 2, \dots \\ 0, & ext{otherwise.} \end{array}
ight.$$

In every neighborhood of 0 there are infinitely many x's for which f(x) = 0. This meams that, if $\lim_{x\to 0} \frac{f(x)}{x}$ exists, it must be 0. On the other hand, if this limit exist, we must also have

$$\lim_{x\to 0}\frac{f(x)}{x}=\lim_{x\to 0}\frac{f(1/n)}{1/n}=\lim_{n\to \infty}nc_n.$$

We see that f'(0) exists if and only if

$$\lim_{n\to\infty}nc_n=0,$$

and if this is the case, f'(0) = 0.

The necessity of this condition was shown above. The fact that it is also sufficient, can be seen from the following:

Let an $\varepsilon > 0$ be given, and let N be such that for all $n \geq N$ we have $|nc_n| < \varepsilon$. Choose $\delta = 1/N$. Then, whenever $0 < |x| < \delta$, we have either f(x)/x = 0 or $f(x)/x = nc_n$ for some n > N. In either case,

$$\left| rac{f(oldsymbol{x}) - f(0)}{oldsymbol{x} - 0} - 0
ight| = \left| rac{f(oldsymbol{x})}{oldsymbol{x}}
ight| < arepsilon.$$

Problem 5. Suppose f satisfies the hypotheses of the mean value theorem on [a, b]. Let S be the set of all slopes of chords determined by pairs of points on the graph of f and let

$$D = \{f'(x) : x \in (a,b)\}.$$

- (a) Prove that $S \subset D$.
- (b) Give an example to show that D can contain numbers not in S.

SOLUTION.

(a) Let $s \in S$. Then there exist $x, y \in [a, b]$ so that x < y and

$$s=rac{f(x)-f(y)}{x-y}.$$

By the mean value theorem, there exists a $\xi \in (x, y) \subset [a, b]$ such that

$$f'(\xi) = rac{f(x) - f(y)}{x - y}.$$

Thus,

$$s = f'(\xi) \in D$$
.

Since $s \in S$ was arbitrary, we see that $S \subset D$.

(b) Let [a,b] = [-1,1], and take $f(x) = x^3$. Then, whenever $x,y \in [a,b]$ and x < y, we have f(x) < f(y), so

$$\frac{f(x)-f(y)}{x-y}>0,$$

in particular, $0 \notin S$. On the other hand, $0 = f'(0) \in D$.

Problem 6. Suppose f is continuous on [a, b] and differentiable on (a, b). If

$$\lim_{x\to a+}f'(x)=C$$

what can you conclude about the right-hand derivative of f at a? Solution. We can conclude that f'(a+) exists and is equal to C. We actually did this in class in order to show that a derivative cannot have

actually did this in class, in order to show that a derivative cannot have jump discontinuities. Here is how the argument went:

Let an $\varepsilon > 0$ be given, and let $\delta > 0$ be such that, whenever $a < x < a + \delta$, we have

$$|f'(x) - C| < \varepsilon.$$

Then, for the very same δ , whenever $a < x < a + \delta$, we can find a $\xi \in (a, x)$ by the mean value theorem, so that

$$f'(\xi) = rac{f(x) - f(y)}{x - y},$$

and therefore

$$\left|rac{f(x)-f(a)}{x-a}-C
ight|=|f'(xi)-C|$$

since $a < \xi < x < a + \delta$. This proves that

$$\lim_{x\to a+}\frac{f(x)-f(a)}{x-a}=C.$$

Problem 7. Let $f:[0,1] \to \mathbb{R}$ be a differentiable function such that $|f'(x)| \leq M$ for all $x \in (0,1)$. Show that

$$\left| \int_0^1 f(x) \ dx - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right| \leq \frac{M}{n}.$$

Solution. By the mean value theorem, for every $x, y \in [0, 1]$, there exists a ξ such that

$$f(x) - f(y) = f'(\xi)(x - y),$$

and hence

$$|f(x)-f(y)|=|f'(\xi)|\cdot|x-y|\leq M|x-y|.$$

We have:

$$egin{aligned} \left| \int_0^1 f(x) \, dx - rac{1}{n} \sum_{k=1}^n f\left(rac{k}{n}
ight)
ight| &= \left| \sum_{k=1}^n \int_{k/(n-1)}^{k/n} \left(f(x) - \left(rac{k}{n}
ight)
ight) \, dx
ight| \ &\leq \sum_{k=1}^n \int_{k/(n-1)}^{k/n} \left| f(x) - \left(rac{k}{n}
ight)
ight| \, dx \leq \sum_{k=1}^n \int_{k/(n-1)}^{k/n} M\left(rac{k}{n} - x
ight) \, dx \ &= M \sum_{k=1}^n \int_{k/(n-1)}^{k/n} \left(rac{k}{n} - x
ight) \, dx = M \sum_{k=1}^n rac{1}{2n^2} = rac{M}{2n}. \end{aligned}$$