
Dept. of Math. Sci., WPI
MA 571 Financial Mathematics I
Instructor: Bogdan Doytchinov, Fall Term 2003

Homework Assignment 4
Solutions

Problem 1. Give an example of a non-empty set Ω and a σ-algebra F of
subsets of Ω such that F has exactly three elements, or prove that such a
pair (Ω,F) does not exist.
Solution. Such a pair does not exist.

Indeed, suppose that Ω is a non-empty set and F is a σ-algebra on Ω
with exactly three elements. From the definition of a σ-algebra, two of these
elements must be Ø and Ω. Further, there must be exactly one more element
of F , let’s call it A, such that A 6= Ω and A 6= Ø. Since F is a σ-algebra,
Ac must be an element of F , too. But since

F = {Ø,Ω, A},

one of the following must be true:

Ac = Ø,
Ac = Ω,
Ac = A.

However, none of the three is possible.

Problem 2. Let Ω3 be the sample space of the model of a coin being tossed
three times,

Ω3 = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Suppose you are told the number of heads obtained in the three tosses.
We will say that a certain event (subset of Ω3) is resolved by this piece
of information, if the information given is sufficient to tell whether or not
the event has occured. Thus, the set {HHH} is resolved by being told the
number of heads in the three tossings, but the event {HTT} is not.

(i) Make a list of all the sets resolved by this information. (There are four
“fundamental” ones, and sixteen altogether.)
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(ii) Is the collection of sets you listed in (i) a σ-algebra?

Solution.

(i) For k = 0, 1, 2, 3, let Ak denote the event that there are exactly k
heads in the three tosses, i.e.,

A0 := {TTT},
A1 := {TTH, THT,HTT},
A2 := {HHT,HTH, THH},
A3 := {HHH}.

Observe that the sets A0, A1, A2 and A3 are disjoint. These are the
four “fundamental” sets. A complete list of the sixteen sets resolved
by knowing the number of heads is:

Ø, Ω
A0, A1 ∪A2 ∪A3

A1, A0 ∪A2 ∪A3

A2, A0 ∪A1 ∪A3

A3, A0 ∪A1 ∪A2

A0 ∪A1, A2 ∪A3

A0 ∪A2, A1 ∪A3

A0 ∪A3, A1 ∪A2.

Denote the family of these 16 sets by G.

(ii) Yes, G is a σ-algebra. We check the three conditions:

(a) Ø ∈ G.

(b) Complements: look at the list above. It is organized in such a
way that on each line the two sets are complements to each other.

(c) Countable unions: each of the sets in G is a union of some of the
sets A0, A1, A2 and A3. Their unions will be again of this form.
All sets of this form are in G.

Problem 3. John and Peter take turns tossing a fair coin. The first one to
get a tail keeps the coin.

(i) If John goes first, what are his chances to win?
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(ii) What is the probability that it will take no more than four tossings
for the game to end?

Solution. Denote, for each integer k ≥ 1,

Ak := {for the first time, a tail appears at the k-th tossing}
= {ω1 = · · · = ωk−1 = H,ωk = T}.

Then, for each k ≥ 1,

P(Ak) =
1
2k
.

Observe that the sets Ak are disjoint.

(i) The probability of John winning is

P

 ⋃
k-odd

Ak

 =
∑

k-odd
P(Ak) =

∞∑
m=0

P(A2m+1) =
∞∑
m=0

1
22m+1

=
2
3
.

(ii) The probability that the game will last at most four tossings is

P(
4⋃

k=1

Ak) =
4∑

k=1

P(Ak)

=
1
2

+
1
4

+
1
8

+
1
16

=
15
16
.

Problem 4. Let G be a σ-algebra of subsets of a nonempty set Ω. Show
the following properties:

(i) If A1, A2, . . . , An is a finite sequence of sets in G, then the union
∪nk=1Ak and the intersection ∩nk=1Ak are also in G.

(ii) If A and B are sets in G, then their set-theoretic difference A \ B :=
A ∩Bc is also in G.

(iii) If A and B are sets in G, then their symmetric difference A4 B :=
(A \B) ∪ (B \A) is also in G.

Solution. It is given that G is a σ-algebra. By definition this means that

(a) Ø ∈ G;
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(b) if A ∈ G, then Ac ∈ G;

(c) if A1, A2, . . . , An, . . . ∈ G, then
⋃∞
n=1An ∈ G.

We now prove the statements of the problem:

(i) Let A1, A2, . . . , An ∈ G be given. If we choose An+1 = An+2 = · · · = Ø,
then,

n⋃
k=1

Ak =
∞⋃
k=1

Ak ∈ G,

by (c). On the other hand, if we choose An+1 = An+2 = · · · = Ω, then,

n⋂
k=1

Ak =
∞⋂
k=1

Ak ∈ G.

(ii) If A,B ∈ G, then, by (b), Bc ∈ G, and, by (i), A ∩Bc ∈ G.

(iii) If A,B ∈ G, then, by (ii), A \B,B \A ∈ G, and, by (i),
(A \B) ∪ (B \A) ∈ G.

Problem 5. In this problem, we look again at the probability space [0, 1]
with Lebesgue measure. Consider the following generalization of the Cantor
set. Let p1, p2, . . . , pn, . . . be real numbers, 0 < pn < 1 for each n. Start
with C0 = [0, 1]. Remove an open interval of length p1 in the middle, so
that you are left with two equal closed intervals of length (1 − p1)/2 each.
Call the resulting set C1. From the middle of each of the two components
of C1, remove an open interval, whose length is p2 times the length of the
component, i.e. p2(1 − p1)/2. Call the result C2. The set C2 consists of
four disjoint closed intervals, each of length (1 − p1)(1 − p2)/4. Continue
this process indefinitely. At stage k, we have a set Ck, consisting of 2k

pieces (closed intervals). Define C :=
⋂∞
k=1Ck. The set C is topologically

equivalent to the Cantor set described in lectures. The usual ternary Cantor
set is obtained if pn = 1/3 for all n.

(i) For each k, show that

P(Ck) = (1− p1)(1− p2) · · · (1− pk).

(ii) Let pn = 1/(n+ 1)2. What is P(C) in this case?
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(iii) Let a real number α be given, with 0 ≤ α < 1. Construct a sequence
of numbers p1, p2, . . . , pn, . . ., with 0 < pn < 1 for each n, in such a
way that P(C) = α.

Soluition.

(i) For k = 1, observe that C1 is obtained from the interval [0, 1] by
removing an interval of length p1. Hence,

P(C1) = (1− p1).

Similarly, Ck+1 is obtained from Ck by removing, from each of its
parts, an interval whose length is pk+1 times the length of that part.
Thus,

P(Ck+1) = (1− pk+1)P(Ck).

The proof of (i) is then finished by induction.

(ii)

P(C) = lim
k→∞

P(Ck)

= lim
k→∞

(1− 1
22

)(1− 1
32

) · · · (1− 1
(k + 1)2

)

= lim
k→∞

(1)(3)
(2)(2)

(2)(4)
(3)(3)

· · · (k)(k + 2)
(k + 1)(k + 1)

= lim
k→∞

1
2
· (k + 2)

(k + 1)

=
1
2
.

(iii) If α = 0, we can take pn = 1/3 for all n. We showed in class that in
this case P(C) = 0.

If 0 < α < 1, we can choose, for example,

pn := 1− 2n
√
α = 1− α(1/2n).

There are other possibilties, too, actually infinitely many.

Problem 6. Let (Ω,F) be a measurable space and let µ be a function that
maps F into [0,∞) with the following properties:
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(a) If A1 and A2 are disjoint sets in F , then µ(A1 ∪A2) = µ(A1) + µ(A2).

(b) If A1, A2, . . . is a sequence of sets in F , then

µ

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

µ(Ak).

Show that µ is a σ-additive measure, i.e., show that ifA1, A2, . . . is a sequence
of disjoint sets in F , then

µ

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

Solution. Let A1, A2, . . . be a sequence of disjoint sets in F . For every n
we have:

µ

( ∞⋃
k=1

Ak

)
≥ µ

(
n⋃
k=1

Ak

)
=

n∑
k=1

µ(Ak).

Since the left-hand side does not depend on n and the inequality holds for
all n, we can take supremums of both sides and conclude that

µ

( ∞⋃
k=1

Ak

)
≥
∞∑
k=1

µ(Ak).

Combining this with (b) gives us the desired equality.

Problem 7. Let Ω = IN , the natural numbers. Let F be the collection of
all subsets of Ω. For every set A ∈ F , let 1A : Ω → {0, 1} be its indicator
function, i.e.

1A(i) =

{
0, if i 6∈ A
1, if i ∈ A.

Let µ : F → [0,∞) be given by

µ(A) :=
∞∑
i=1

1
2i

1A(i).

Is µ a probability measure on (Ω,F)?
Solution. The answer is yes.
By definition, µ is a probability measure on (Ω,F) if it satisfies the following
conditions:
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(i) µ is defined on F and takes only non-negative values,

(ii) µ(Ω) = 1,

(iii) µ is countably-additive.

We verify these conditions one by one.
The condition (i) is automatic from the definition of µ. Condition (ii)

is also easy. Putting A = Ω = IN in the formula for µ we observe that
1Ω(i) = 1 for all i ∈ IN and so

µ(Ω) :=
∞∑
i=1

1
2i

=
1/2

1− 1/2
= 1,

by the formula for the geometric series.
Thus, the only non-trivial thing to verify is the countable additivity of

µ. Let An, n = 1, 2, ... be a countable sequence of pairwise disjoint subsets
of Ω, i.e. Am ∩ An = Ø whenever m 6= n. Let A :=

⋃∞
n=1An and observe

that

1A =
∞∑
n=1

1An .

Further,

µ(A) =
∞∑
i=1

1
2i

1A(i) =
∞∑
i=1

1
2i

∞∑
n=1

1An(i) =
∞∑
i=1

∞∑
n=1

1
2i

1An(i),

while ∞∑
n=1

µ(An) =
∞∑
n=1

∞∑
i=1

1
2i

1An(i).

Since all the terms of the double series are non-negative, we can interchange
the order of summation and arrive at

µ(A) =
∞∑
n=1

µ(An)

as needed, i.e. we proved the countable additivity of µ.
Remark. For double series whose terms change sign, the equality

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij
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is not always true. Here is an example. Let

aij =


1, if i = j,
−1, if j = i+ 1,

0, otherwise.

Then ∞∑
i=1

∞∑
j=1

aij = 0 6= 1 =
∞∑
j=1

∞∑
i=1

aij .

8


