
Dept. of Math. Sci., WPI
MA 571 Financial Mathematics I
Instructor: Bogdan Doytchinov, Fall Term 2003

Homework Assignment 5
Solutions

Problem 1. Let Ω = IR and let X : Ω→ IR be given by

X(ω) =

{
ω if ω ≥ 0,
0 if ω < 0.

(a) Find a σ-algebra, Σ1 on Ω (other than the Borel σ-algebra or the power
set) such that X is Σ1-measurable.
(b) Find a σ-algebra, Σ2 on Ω (other than the trivial algebra {IR,Ø} ) such
that X is not Σ2-measurable.
Solution.
(a) We know that if we take Σ1 := σ(X), this will make X automatically
Σ1-measurable. This is (by definition) the smallest σ-algebra that will do
the job. Thus, it is enough to make sure that Σ1 is not the Borel σ-algebra
on IR and that it is not the power set of IR. To this end, let’s just figure out
what Σ1 exactly is. For a single random variable X we have

Σ1 = σ({X}) = {X−1(B) : B ∈ B(IR)}.

For a Borel set B ∈ B(IR) we have, because of the particular form of X,

X−1(B) =

{
B ∩ (0,∞) if 0 6∈ B,
B ∪ (−∞, 0] if 0 ∈ B.

Thus,

Σ1 = σ({X}) = {B ∩ (0,∞) , B ∪ (−∞, 0] : B ∈ B(IR)}.

(b) Many answers are possible, here is just one possibility:

Σ2 := {Ø, IR, (−∞, 0], (0,∞)}.

Since (0, 1) ∈ B(IR) and

X−1( (0, 1) ) = (0, 1) 6∈ Σ2,

it is clear that X is not Σ2-measurable.
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Problem 2. Let (Ω,F ,P) be a probability space and let X : Ω→ IR be a
random variable. Consider the function F : IR −→ [0, 1] defined by

F (x) := P{X ≤ x} = P{ω ∈ Ω : X(ω) ≤ x}.

(F is called the c.d.f. of X.)

(i) Show that F is monotonic, and hence, Borel-measurable.

(ii) Let Y : Ω −→ IR be defined by

Y := F (X).

Explain why Y is a random variable.

(iii) Assuming that F : IR −→ IR is continuous, compute P{Y ≤ 1
2}.

Solution.

(i) Let x′ < x′′. Then, (−∞, x′] ⊂ (−∞, x′′] and therefore,

P{X ∈ (−∞, x′]} ≤ P{X ∈ (−∞, x′′]},

which means exactly that F (x′) ≤ F (x′′), i.e. F is monotonically
non-decreasing. All monotonic functions are Borel-measurable.

(ii) Since F is Borel-measurable and X is a random variable, Y = F (X) is
also a random variable.

(iii) Now assume that F is a continuous function. Define

κ := sup
{
x : F (x) ≤ 1

2

}
.

Then, from the continuity of F it follows that F (κ) = 1
2 .

Further, observe that x ≤ κ implies that F (x) ≤ 1
2 , because F is

monotonic. Also, x > κ implies that F (x) > 1
2 , because of the way we

defined κ. Thus, x ≤ κ if and only if F (x) ≤ 1
2 , so

P
{
Y ≤ 1

2

}
= P

{
F (X) ≤ 1

2

}
= P{X ≤ κ} = F (κ) =

1
2
.
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Remark. Exactly in the same way it can be shown that, under the assump-
tion of continuity of F , for every y ∈ [0, 1],

P{Y ≤ y} = y,

i.e., the random variable Y is uniformly distributed on the interval [0, 1].

Problem 3. Toss a fair (p = q = 1
2) coin repeatedly infinitely many times.

Let ωk denote the outcome on the kth toss.
For each positive integer k, define

Yk(ω) =

{
1 if ωk = H,
0 if ωk = T,

and set

X(ω) := 2
∞∑
k=1

Yk(ω)
3k

.

Let LX be the measure induced on IR by X.

(i) Is there any point a ∈ IR such that LX{a} > 0? Explain your answer.

(ii) Is there a subset C of IR such that LX(C) = 1 but the Lebesgue measure
of C is zero? Explain your answer.

Solution.

(i) For each ω ∈ Ω, we have P{ω} = 0. If a ∈ IR, then there can be at most
one ω ∈ Ω satisfying X(ω) = a.

Indeed, suppose X(ω) = X(ω ′) and Y1(ω) < Y1(ω ′). Then Y1(ω) = 0,
Y1(ω ′) = 1 and therefore X(ω) ≤ 1

3 while X(ω ′) ≥ 2
3 , which con-

tradicts the fact that X(ω) = X(ω ′). Thus, we see that, if X(ω) =
X(ω ′), then Y1(ω) = Y1(ω ′). Proceeding further in a similar way by
induction, we see that Yk(ω) = Yk(ω ′) for all k. This implies ω = ω ′.
Then,

LX{a} = P{ω : X(ω) = a} = 0 for every a ∈ IR.
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(ii) From the definition of X, it is clear that the range of X is a subset of
IR consisting of exactly those points α that can be represented in the
form

α =
∞∑
k=1

αk
3k

with αk = 0 or 2. From the discussion in class, we recall that this is
exactly the ternary Cantor set C we constructed.

Thus,
LX(C) = P{ω : X(ω) ∈ C} = 1.

while, as we showed in class, µ0(C) = 0.

We say that LX and Lebesgue measure µ0 are singular with respect
to each other, because each puts all its measure on a set where the
other puts no measure. Lebesgue measure puts all its measure on the
complement of the Cantor set C; LX puts all its measure on C.

Problem 4. Let µ0 be the Lebesgue measure on (IR,B(IR)) and let the
function f : IR −→ [0,∞] be a non-negative Borel function (we allow f to
take infinite values for some values of x).

(a) If

C :=
∫
IR
f dµ0 <∞,

show that the set A := {x : f(x) =∞} has Lebesgue measure 0.
[Hint: Consider the sets An := {x : f(x) > n}.]

(b) If ∫
IR
f dµ0 = 0,

show that the set B := {x : f(x) > 0} has Lebesgue measure 0.
[Hint: Consider the sets Bn := {x : f(x) > 1

n}.]

Solution. We proceed as follows.

(a) Define An := {x : f(x) > n}. Then

A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . and A =
∞⋂
n=1

An.
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For every n,

C =
∫
IR
f dµ0 =

∫
IR
f · (1An + 1Acn)dµ0

=
∫
IR
f · 1Andµ0 +

∫
IR
f · 1Acndµ0 ≥

∫
IR
f · 1Andµ0

≥
∫
IR
n · 1Andµ0 = nµ0(An),

and hence
µ0(An) ≤ C

n
.

Finally,

µ0(A) = µ0(
∞⋂
n=1

An) = lim
n→∞

µ0(An) ≤ lim
n→∞

C

n
= 0.

(b) Define Bn := {x : f(x) > 1
n}. Then

B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ . . . and B =
∞⋃
n=1

Bn.

For every n,

0 =
∫
IR
f dµ0 =

∫
IR
f · (1Bn + 1Bcn)dµ0

=
∫
IR
f · 1Bndµ0 +

∫
IR
f · 1Bcndµ0 ≥

∫
IR
f · 1Bndµ0

≥
∫
IR

1
n
· 1Bndµ0 =

1
n
µ0(Bn),

and hence
µ0(Bn) = 0.

Finally,

µ0(B) = µ0(
∞⋃
n=1

Bn) = lim
n→∞

µ0(Bn) = 0.
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