Dept. of Math. Sci., WPI MA 571 Financial Mathematics I Instructor: Bogdan Doytchinov, Fall Term 2003

> Homework Assignment 4 Due Thursday, October 2, 2003

Problem 1. Give an example of a non-empty set Ω and a σ -algebra \mathcal{F} of subsets of Ω such that \mathcal{F} has exactly three elements, or prove that such a pair (Ω, \mathcal{F}) does not exist.

Problem 2. Let Ω_3 be the sample space of the model of a coin being tossed three times,

$$\Omega_3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$$

Suppose you are told the number of heads obtained in the three tosses. We will say that a certain event (subset of Ω_3) is resolved by this piece of information, if the information given is sufficient to tell whether or not the event has occured. Thus, the set $\{HHH\}$ is resolved by being told the number of heads in the three tossings, but the event $\{HTT\}$ is not.

- (i) Make a list of all the sets resolved by this information. (There are four "fundamental" ones, and sixteen altogether.)
- (ii) Is the collection of sets you listed in (i) a σ -algebra?

Problem 3. John and Peter take turns tossing a fair coin. The first one to get a tail keeps the coin.

- (i) If John goes first, what are his chances to win?
- (ii) What is the probability that it will take no more than four tossings for the game to end?

Problem 4. Let \mathcal{G} be a σ -algebra of subsets of a nonempty set Ω . Show the following properties:

- (i) If A_1, A_2, \ldots, A_n is a finite sequence of sets in \mathcal{G} , then the union $\bigcup_{k=1}^n A_k$ and the intersection $\bigcap_{k=1}^n A_k$ are also in \mathcal{G} .
- (ii) If A and B are sets in \mathcal{G} , then their set-theoretic difference $A \setminus B := A \cap B^c$ is also in \mathcal{G} .
- (iii) If A and B are sets in \mathcal{G} , then their symmetric difference $A \bigtriangleup B := (A \setminus B) \cup (B \setminus A)$ is also in \mathcal{G} .

Problem 5. In this problem, we look again at the probability space [0, 1] with Lebesgue measure. Consider the following generalization of the Cantor set. Let $p_1, p_2, \ldots, p_n, \ldots$ be real numbers, $0 < p_n < 1$ for each n. Start with $C_0 = [0, 1]$. Remove an open interval of length p_1 in the middle, so that you are left with two equal closed intervals of length $(1 - p_1)/2$ each. Call the resulting set C_1 . From the middle of each of the two components of C_1 , remove an open interval, whose length is p_2 times the length of the component, i.e. $p_2(1 - p_1)/2$. Call the result C_2 . The set C_2 consists of four disjoint closed intervals, each of length $(1 - p_1)(1 - p_2)/4$. Continue this process indefinitely. At stage k, we have a set C_k , consisting of 2^k pieces (closed intervals). Define $C := \bigcap_{k=1}^{\infty} C_k$. The set C is topologically equivalent to the Cantor set described in lectures. The usual ternary Cantor set is obtained if $p_n = 1/3$ for all n.

(i) For each k, show that

$$\mathbf{P}(C_k) = (1 - p_1)(1 - p_2) \cdots (1 - p_k).$$

- (ii) Let $p_n = 1/(n+1)^2$. What is $\mathbf{P}(C)$ in this case?
- (iii) Let a real number α be given, with $0 \leq \alpha < 1$. Construct a sequence of numbers $p_1, p_2, \ldots, p_n, \ldots$, with $0 < p_n < 1$ for each n, in such a way that $\mathbf{P}(C) = \alpha$.

Problem 6. Let (Ω, \mathcal{F}) be a measurable space and let μ be a function that maps \mathcal{F} into $[0, \infty)$ with the following properties:

(a) If A_1 and A_2 are disjoint sets in \mathcal{F} , then $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.

(b) If A_1, A_2, \ldots is a sequence of sets in \mathcal{F} , then

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} \mu(A_k).$$

Show that μ is a σ -additive measure, i.e., show that if A_1, A_2, \ldots is a sequence of disjoint sets in \mathcal{F} , then

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k).$$

Problem 7. Let $\Omega = \mathbb{N}$, the natural numbers. Let \mathcal{F} be the collection of all subsets of Ω . For every set $A \in \mathcal{F}$, let $\mathbf{1}_A : \Omega \to \{0,1\}$ be its indicator function, i.e.

$$\mathbf{1}_{A}(i) = \begin{cases} 0, \text{ if } i \notin A\\ 1, \text{ if } i \in A. \end{cases}$$

Let $\mu: \mathcal{F} \to [0,\infty)$ be given by

$$\mu(A) := \sum_{i=1}^{\infty} \frac{1}{2^i} \mathbf{1}_A(i).$$

Is μ a probability measure on (Ω, \mathcal{F}) ?