Dept. of Math. Sci., WPI MA 571 Financial Mathematics I Instructor: Bogdan Doytchinov, Fall Term 2003

> Homework Assignment 7 Due Thursday, November 6, 2003

Problem 1. (Martingale transform.) Toss a fair $(p = q = \frac{1}{2})$ coin repeatedly infinitely many times. Let ω_k denote the outcome on the k^{th} toss. Denote be \mathcal{F}_k the σ -algebra generated by the first k tosses.

Define a random walk S_0, S_1, S_2, \ldots in the following way. Set $S_0 = 0$, and then, recursively,

$$S_{k+1}(\omega) = \begin{cases} S_k(\omega) + 1 & \text{if } \omega_{k+1} = H, \\ S_k(\omega) - 1 & \text{if } \omega_{k+1} = T. \end{cases}$$

- (i) Show that S_0, S_1, S_2, \ldots is a martingale with respect to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$
- (ii) Let $\Delta_0, \Delta_1, \Delta_2, \ldots$ be another stochastic process adapted to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$ Define $I_0 = 0$, and for each positive integers n, set

$$I_n = \sum_{k=0}^{n-1} \Delta_k (S_{k+1} - S_k).$$

Show that I_0, I_1, I_2, \ldots is adapted to the filtration $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$ Is it a martingale?

(The process I_0, I_1, I_2, \ldots is a discrete analogue of the *Itô integral*.)

Problem 2. (Generalized binomial model.)

Let Ω_N be the set of sequences of N coin tosses, and let \mathcal{F}_n be the σ -algebra of information generated by the first n tosses, $n = 0, 1, \ldots, N$. Let $\{S_n\}_{n=0}^N$ be an adapted process of positive random variables, which represent stock prices. Let $\{r_n\}_{n=1}^{N-1}$ be an adapted process of nonegative random variables which represent interest rates, i.e., $r_n(\omega_1 \ldots \omega_n)$ is the interest rate paid by the money market between times n and n + 1 if $\omega_1 \ldots \omega_n$ is the outcome of the first n coin tosses.

- (i) Let $\{\Delta_n\}_{n=0}^{N-1}$ be an adapted sequence of random variables, where each Δ_n represents the number of shares of stock held between times n and n+1. Let X_0 be nonrandom and represent the initial value of an agent's portfolio. In terms of X_n , the value of the agent's portfolio at time n, write a formula for X_{n+1} , the value of the agent's portfolio at time n+1.
- (ii) Show that the process $\{X_n\}$ is adapted.
- (iii) What is the extension of the Theorem on page 28 of lecture 7 for this case? Note that p̃ and q̃ must now depend on time and coin tosses, i.e., they are also stochastic processes. Are these processes adapted?
- (iv) In a two-period model with $S_0 = 4$, $S_1(H) = 8$, $S_1(T) = 2$, $S_2(HH) = 10$, $S_2(HT) = 2$, $S_2(TH) = 5$, $S_2(TT) = 1$, $r_0 = \frac{1}{4}$, $r_1(H) = 0$, and $r_1(T) = \frac{1}{3}$, consider a European call expiring at time two and having strike price K = 4.
 - (a) What are the time-one values $V_1(H)$ and $V_1(T)$ and the time-zero value V_0 of this call?
 - (b) What are the values of Δ_0 , $\Delta_1(H)$ and $\Delta_1(T)$ for the portfolio which replicates this call?