Dept. of Math. Sci., WPI

MA 571 Financial Mathematics I
Instructor: Bogdan Doytchinov, Fall Term 2003

Homework Assignment 7

Due Thursday, November 6, 2003

Problem 1. (Martingale transform.) Toss a fair $\left(p=q=\frac{1}{2}\right.$) coin repeatedly infinitely many times. Let ω_{k} denote the outcome on the $k^{\text {th }}$ toss. Denote be \mathcal{F}_{k} the σ-algebra generated by the first k tosses.

Define a random walk $S_{0}, S_{1}, S_{2}, \ldots$ in the following way. Set $S_{0}=0$, and then, recursively,

$$
S_{k+1}(\omega)= \begin{cases}S_{k}(\omega)+1 & \text { if } \omega_{k+1}=H \\ S_{k}(\omega)-1 & \text { if } \omega_{k+1}=T\end{cases}
$$

(i) Show that $S_{0}, S_{1}, S_{2}, \ldots$ is a martingale with respect to the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$.
(ii) Let $\Delta_{0}, \Delta_{1}, \Delta_{2}, \ldots$ be another stochastic process adapted to the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ Define $I_{0}=0$, and for each positive integers n, set

$$
I_{n}=\sum_{k=0}^{n-1} \Delta_{k}\left(S_{k+1}-S_{k}\right)
$$

Show that $I_{0}, I_{1}, I_{2}, \ldots$ is adapted to the filtration $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ Is it a martingale?
(The process $I_{0}, I_{1}, I_{2}, \ldots$ is a discrete analogue of the Ito integral.)
Problem 2. (Generalized binomial model.)
Let Ω_{N} be the set of sequences of N coin tosses, and let \mathcal{F}_{n} be the σ-algebra of information generated by the first n tosses, $n=0,1, \ldots, N$. Let $\left\{S_{n}\right\}_{n=0}^{N}$ be an adapted process of positive random variables, which represent stock prices. Let $\left\{r_{n}\right\}_{n=1}^{N-1}$ be an adapted process of nonegative random variables which represent interest rates, i.e., $r_{n}\left(\omega_{1} \ldots \omega_{n}\right)$ is the interest rate paid by the money market between times n and $n+1$ if $\omega_{1} \ldots \omega_{n}$ is the outcome of the first n coin tosses.
(i) Let $\left\{\Delta_{n}\right\}_{n=0}^{N-1}$ be an adapted sequence of random variables, where each Δ_{n} represents the number of shares of stock held between times n and $n+1$. Let X_{0} be nonrandom and represent the initial value of an agent's portfolio. In terms of X_{n}, the value of the agent's portfolio at time n, write a formula for X_{n+1}, the value of the agent's portfolio at time $n+1$.
(ii) Show that the process $\left\{X_{n}\right\}$ is adapted.
(iii) What is the extension of the Theorem on page 28 of lecture 7 for this case? Note that \tilde{p} and \tilde{q} must now depend on time and coin tosses, i.e., they are also stochastic processes. Are these processes adapted?
(iv) In a two-period model with $S_{0}=4, S_{1}(H)=8, S_{1}(T)=2, S_{2}(H H)=$ $10, S_{2}(H T)=2, S_{2}(T H)=5, S_{2}(T T)=1, r_{0}=\frac{1}{4}, r_{1}(H)=0$, and $r_{1}(T)=\frac{1}{3}$, consider a European call expiring at time two and having strike price $K=4$.
(a) What are the time-one values $V_{1}(H)$ and $V_{1}(T)$ and the time-zero value V_{0} of this call?
(b) What are the values of $\Delta_{0}, \Delta_{1}(H)$ and $\Delta_{1}(T)$ for the portfolio which replicates this call?

