1. Consider the function u(x,y) = ln(xy).
a. Obtain u1, u2, u11, u12, u21 and u22.
b. Show that u11u22 > u12u21.
2. Consider the function u(x,y) = ln(x2) + 2xy.
a. Obtain u1, u2, u11, u12, u21 and u22.
b. Is u11u22 - u12u21 > 0?
3. Consider the function L(x,y,m) = xy + m(300-2x-3y).
a. Obtain L1, L2 and L3.
b. Set the first-order derivatives equal to zero. Solve for x, y and m. Call the solutions x0, y0 and m0.
c. Find L(x0, y0, m0).
4. Consider the functions f(x,y) = 4x2/3y1/3, and g(x,y) = 600 - 4x - 10y.
a. Set up a new function L(x,y,m) such that
L(x,y,m) = f(x,y) + mg(x,y)
b. Obtain L1, L2 and L3.
c. Set the first-order derivatives equal to zero. Solve for x, y and m. Call the solutions x0, y0 and m0.
c. Find L(x0, y0, m0).