Consider the maximization problem:
max f(x,y)
s.t. g(x,y,a) = c.
L = f(x,y) + λ[c - g(x,y,a)].
f1(x,y) = λg1(x,y,a) (1) f2(x,y) = λg2(x,y,a) (2) g(x,y,a) = c (3)
x* = x(a)
y* = y(a)
f* = f(x*,y*).
g1(dx*/da) + g2(dy*/da) + g3 = 0.
df*/da = - λg3.
Result: A unit increase in the parameter a will cause the objective function to increase by -λg3.