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A simple, global picture of photon exchange in the flat, matter-dominated universe is presented
using relativistic cosmology. Equations for the photon’s recessional velocity and position relative
to the receiver are derived. The results are discussed in the context of the “raisin bread universe.”
Contrary to intuition, it is shown that the Hubble recessional velocity of the emitter can exceed the
speed of light for sources within the particle horizon of the receiver. The model used to obtain
these results can be used by introductory astronomy students to obtain the proper distance and the

time-of-flight distance to sources with large redshifts.

I. INTRODUCTION

It is widely accepted among astronomers that general
relativistic cosmology allows for Hubble recessional veloci-
ties greater than the speed of light c. However, it is not well
known that some of these sources may lie within our parti-
cle horizon. In the explanation of this result, it is conven-
ient (and at times necessary) to introduce concepts such as
redshift, time-of-flight distance, proper distance, cosmic
microwave background, curved space-time, Hubble’s law,
and particle horizon. These are concepts associated with
the fields of general relativity (GR), astronomy, and cos-
mology, but this paper assumes only that the reader is fami-
liar with calculus and special relativity. Therefore, this pre-
sentation begins with two sections which introduce the
necessary concepts of astronomy, GR, and cosmology.

The necessary terminology is explained in Sec. II. Terms
such as particle horizon, cosmic microwave background
(CMB), cosmological expansion, and redshift are ex-
plained there. General relativity is also discussed concep-
tually in Sec. II. An explanation of Hubble’s law and its use
in astronomical distance measurements follows in Sec. III.
The reader who is already familiar with these concepts can
skip Secs. II and III without loss of continuity.

Section IV sets forth all the necessary mathematics of the
paper. The section begins with a description of the mathe-
matical model. Following a description of the mathemati-
cal model, several pertinent equations are derived. These
equations (valid for use on very distant objects) describe a
global picture of photon exchange in the flat, matter-do-
minated universe of GR. These results are expressed predo-
minantly in terms of proper distance and proper time.
However, astronomers typically use time-of-flight (TOF)
distance when discussing very distant objects, thus TOF
distance is also addressed. The reader uninterested in the
mathematical details can skim Sec. IV for definitions.
Knowledge of the definitions in Sec. IV will suffice for a
qualitative comprehension of the example (Sec. V) and
discussion (Sec. VI).

ILI. INTRODUCTORY CONCEPTS

This paper adopts, a priori, the fact that the universe is
expanding. The material contents of the universe are not
expanding into space, but rather space itself is expanding,
carrying along with it the content of the universe. Many
books use illustrations of receding galaxies, raisin bread,
and balloons to depict the concept of cosmological expan-
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sion." In these representations the reader is privy to a view
from “outside” the universe. This point of view is referred
to as the “raisin bread universe.” The raisins represent ga-
laxies and the expanding bread represents space.

Tracing the cosmological expansion retrotemporaily,
one concludes that at one time the contents of the universe
existed in a state of infinite density and infinite tempera-
ture. This initial singularity is called the Big Bang. The
existence of an initial singularity is an inevitable result of
GR cosmologies of physical interest.’

General relativity is a generalization of special relativity
(SR) in that GR allows for relative acceleration between
inertial reference frames. As applied to cosmology, GR is a
theory of gravity. Simply put, matter and energy curve
space-time and objects in freefall have worldlines of extre-
mal length, called geodesics, in the curved space-time. SR
holds in the inertial frames of GR, i.e., locally about each
inertial observer. Of particular interest in GR cosmology is
the set of inertial frames which detect an isotropic cosmic
microwave background.?

The CMB is the radiation freed from scattering after the
free electrons and protons combined to form hydrogen.
This is often referred to as the “recombination epoch” and
occurred after the universe had cooled (due to its expan-
sion) to below about 4000 K. Prior to the recombination
epoch, the photons (distributed according to Planck’s
law), had sufficient energy to ionize the hydrogen. After
the formation of hydrogen, the photons were effectively
decoupled from matter. The cosmological expansion has
forced these photons’ wavelengths to expand, thereby cool-
ing them to their present temperature of 2.73 K. This
change in wavelength due to the cosmological expansion is
called cosmological redshift.

Quantitatively, redshift is defined as the change in wave-
length (wavelength received minus wavelength emitted)
divided by the emitted wavelength.* In this paper it is as-
sumed that large redshifts are due predominantly to the
cosmological expansion.” Thus the larger the redshift, the
longer the photon has been in flight, and the farther its
emitter is from us. The age of the universe is finite, there-
fore, there is a distance fimit to what we can observe in the
universe. That limit is called the particle horizon.®

Although the particle horizon is the boundary of our
observable universe, we do not receive light from the parti-
cle horizon for two reasons. First, the redshift of a photon
emitted at the Big Bang is infinite by definition. A photon
with an infinite wavelength has no energy and cannot be
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detected. Second, the universe was opaque until hydrogen
recombination. Therefore, the oldest photons we can de-
tect are those of the CMB which correspond to a redshift of
about 1500. Redshift is typically converted to distance via
Hubble’s law.

III. HUBBLE’S LAW AND DISTANCE

In 1929, Edwin Hubble announced that a galaxy’s reces-
sional velocity was approximately proportional to its dis-
tance from us.” The mathematical statement v = Hyr is
now known as Hubble’s law, where v is the Hubble reces-
sional velocity,  is the distance between us and the galaxy
in question, and H, is called the Hubble constant. For v<c
the approximate equation v = zc is valid, where z is the
redshift.

If H, is known, the small z form of Hubble’s law,
zc = Hyr, can be used to find distance in the range
0.003 £z 50.5.2 The lower limit might be explained as the
point where peculiar galaxy velocity,’ i.e., motion not asso-
ciated with the cosmological expansion, is of the order of
the cosmological expansion velocity. The upper limit exists
because of the cosmological dependence of 7(z).

That is to say, the function r of z depends on which cos-
mology model is employed. GR cosmology plus the cosmo-
logical principle, i.e., the assumption that the universe
looks isotropic in the large at all points in space, yield three
possible cosmology models. In these models the universe
has either zero spatial curvature (flat), positive spatial cur-
vature (spherical), or negative spatial curvature (hyperbo-
loid). For z50.5 these models’ 7(z) reduce to the small z
Hubble’s law. ' For z 2 0.5 a model must be chosen and the
type of distance specified."’

There are many different concepts of distance used in
astronomy and cosmology.'?> These distances, essentially
equal for small z, differ widely for large z. Astronomers
typically use the time-of-flight (TOF) distance when refer-
ring to large z objects.’* TOF distance is the time it takes a
photon to travel between emitter and receiver multiplied by
c. The distance that fits intuitively with a raisin bread uni-
verse is that of proper distance. The proper distance is the
spatial separation between emitter and receiver that exists
at any given time. Because TOF distance is widely refer-
enced and proper distance fits the intuitive raisin bread
universe, both forms are used in equations which are der-
ived in the next section. TOF distance and proper distance
are model dependent, but easily obtained in the flat, GR
cosmology model.

IV. THE MODEL

The cosmology model used in this paper is the flat, mat-
ter-dominated GR cosmology model. “Matter-dominat-
ed” means that pressure (e.g., radiation pressure) is as-
sumed negligible and set equal to zero in the GR equations
of motion. Because an understanding of the GR equations
of motion requires a detailed knowledge of GR, some re-
sults herein must be stated without proof. (The omission of
the GR dependent calculations is not critical to the deriva-
tions, but the interested reader can find the omitted details
in any standard general relativity text.) Qualitative defini-
tions of time and proper distance for this model are estab-
lished before beginning the calculations.

The set of observers that detect an isotropic CMB (each
member of the set is abbreviated “I0”) is used to define the
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concepts of time and distance. The proper time measured
by the IOs, synchronized so that ¢ = 0 is the Big Bang, is
what is meant by time. Therefore, the rising of the raisin
bread represents billions of years (Gyrs). Galaxies are as-
sumed to be IOs, consistent with the assumption that the
cosmological recessional velocity dominates peculiar ga-
lactic velocities for large z. The instantaneous spatial separ-
ation between IOs, measured in billions of light years
(Gcyrs), is what is meant by proper distance. Thus proper
distance is the distance given by the metric on any space-
time surface of constant time.

The metric ds? gives the infinitesimal distance measure
of the space-time and therefore establishes the geometry of
space. The metric that corresponds to the above concepts
of distance and time for the spatially flat universe is

ds = —c*di® +a*(1) (dy* + x* df”*
+ x? sin’ 6 dg?). (1)
Obviously, the constant-time hypersurfaces are Eucli-
dean (flat) spaces covered with spherical coordinates. The
coordinates are affixed to the network of IOs and thus ex-
pand with the universe. Therefore, the coordinate distance
between any pair of IOs is constant. The changing distance
between the IOs is specified by a (). The time in this metric

is the proper time as measured by the IOs. For the flat,
matter-dominated universe general relativity gives

a(t) = Bt¥?, (2)

where £ is a constant that will not affect the calculations.
[This form of a(#) is in disregard to any inflationary
epochs that may have occurred in the early universe.'*]

For simplicity assign the receiver y = 0. The light will
then proceed radially (i.e., with 6 and ¢ constant) to the
receiver. This gives the proper distance between emitter
and receiver at time ¢ as

r.(t) = x.a(t) = x.Bt*", (3)
where ¥, is the radial coordinate of the emitter. This is an

allowed spatial path for the photon provided that it travels
along a null geodesic (ds* = 0), so,

a(t)ydy = —cdt, 4)
where the negative sign indicates that the photon is travel-
ing toward smaller values of y. The recessional velocity of
the source is defined as

. , d
.= re = eai =T 5
X dt )
Equation (5) can be rewritten as
v=rH, (6)

where H = g/a. Equation (6) is the relativistic form of
Hubble’s law, H is the “Hubble constant,” and v is the
Hubble recessional velocity. Using a(¢) from Eq. (2) the
Hubble “constant” is

H=2/(3¢). (N
Equation (4) can be integrated using Eq. (2) to obtain
Xe =3c(ty? —1.)/B, (8)

where 7, is the photon emission time, and ¢, is the photon
reception time. Equations (3) and (8) give

r,(t) =3ct?3 (i — V3. 9
The cosmological redshift is given by

z=AA /A = [a(tp)/a(tg)] — 1 (10)
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or using Eq. (2)

z= (-t /1%, (11)
Equations (7), (9), and (11) give
r.(t) =2c[1 — (1 +2) ~'2)/H,, (12)

where H, = H(%,). Using Eqgs. (6) and (12) gives the
Hubble recessional velocity of the source at time ¢, as

v(ty) = Hyr, (2,) = 2¢[1 — (1 +2) ~V?]. (13)

[ Notice that we obtain v(#y)-> ¢ for z> 3.] Using Eq. (11),
the time-of-flight distance for the photon takes the form

R,=c(ty—1t,) =cty[1 — (1 +2) ~3?] (14)
and with Eq. (7)
R, =2c[1~ (142)~¥*1/(3H,). (15)

The photon’s proper distance from the receiver as a func-
tion of time can be obtained by integrating Eq. (4) to arbi-
trary time ¢ acquiring

T, =Xp(Da(t) =r, —3ct? (' — 11, (16)
where, of course,

Xp(te)=)(e 17
and

X, (%) =0. (18)

Using Egs. (3) and (8), Eq. (16) can also be written
r, =3ct [(t/)"? —1]. (19)

Defining a photon recessional velocity analogous to the
Hubble recessional velocity of the source gives

P, =F, +2c(t,/1)"* — 3¢ (20)
or equivalently
Fp =2c(t/1)' = 3c. (21

The above derivations and formulas are well suited for a
calculus-based introductory astronomy course.'> Also,
these results incorporate gravitational acceleration effects,
whereas many introductory astronomy texts do not. I have
found that students of trigonometry-based astronomy
courses can use the results after being shown an example.

V. EXAMPLE

The example employed here is that of a recently disco-
vered quasar'® with a redshift of 4.73. To use the above
equations, a value of H, is needed. The value of H, used
here is 52 (km/s)/Mpc (Ref. 17) (1 Mpc = 0.00326
Gecyrs). Equation (7) then gives ¢, = 13 Gyrs. This z;is a
far cry from the 18 Gyrs needed to produce the oldest stars,
but the uncertainties in both H; and the ages of the oldest
stars render these numbers compatible.'®

Continuing with the example, Eq. (11) gives £, = 0.95
Gyrs. Equation (9) [or equivalently Eq. (12)] yields 22
Gecyrs as the current proper distance to the quasar. Using
Egs. (10) and (3) allows for the computation of the proper
distance between us and the quasar at emission time. This
distance was thus (z + 1) times smaller than the separa-
tion at time of reception, or 3.8 Gcyrs. The current reces-
sional velocity of the quasar is 1.2¢ from Eq. (13).The
recessional velocity of the quasar at emission time can be
found from combining Eqs. (5), (2), and (11) to obtain a
coordinate free equation for v(¢,)/v(z,). This then gives
the recessional velocity of the quasar at emission time as

144 Am. J. Phys., Vol. 60, No. 2, February 1992

g P N
g 54+ f” \'s‘.
] .,
- .
S / .,
] 41 N,
1S AN
e 3 \
o
= hY
o AN
e 27 R
o \
2
s 17
2
[}
O 5 : 1 + 1 + I e I 4

9 10 11 12 13 14

Time in Billions of Years

01 2 3 4 56 7 8

Fig. 1. The photon is emitted from a quasar at ¢, = 0.95 Gyrs. The quasar
(and thus the photon) is 3.8 Geyrs away from us at time of emission.
Initially the photon is “dragged away from us” by the cosmological ex-
pansion to a distance of 5.8 Geyrs at t = 3.9 Gyrs. At this time gravity has
slowed the expansion rate of space such that the photon is at a coordinate
position with recessional velocity of ¢. The photon then begins to ap-
proach us and arrives at 7, = 13 Gyrs.

2.8¢ or (z+ 1)? times the current quasar recessional
velocity.

The photon’s proper distance at time of emission coin-
cides with that of the quasar (as it must) as seen by Eq.
(16) (Fig. 1). The distance of the photon at reception is, of
course, zero as given by Eq. (19). The recessional velocity
of the photon at time of emission is #, — ¢ from Eq. (20).
Thus the photon is initially moving away from us at 1.8¢
(Fig. 2). Attime of reception the photon’s recessional velo-
cityis — c as given by Eq. (21). These results foliow New-
tonian intuition which is verified by combining Egs. (4),
(16), and (20) to get’

b, =Hr, —c. (22)

The quasar’s TOF distance is given by Eq. (14) as 12
Gcyrs. This is simply because the photon has traveled at

speed ¢ for 12 billion years. The particle horizon is at a TOF
distance of ct,. [This is true of all models, but #,(H,) is
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Fig. 2. Because the photon is being “dragged away from us” initially, its
recessional velocity is initially positive. At emission the photon is receding
at 1.8¢. 7, = O corresponds to the time when gravity has slowed the reces-
sional velocity of space at the photon’s position to c. After 7 = 3.9 Gyrs,
the amount of expanding space between the photon and receiver is de-
creasing and the photon approaches the receiver at an increasing rate until
the recessional velocity at reception is — c.
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model dependent. Therefore, the TOF distance to the par-
ticle horizon, r,;, cannot be found by simply assigningv = ¢
in Hubble’s law to get ry; = ¢/H,. ]

The above result which gives v > ¢ for the quasar within
our particle horizon does not violate special relativity. Spe-
cial relativity holds only locally in general relativity. These
are for the most part global results. The one velocity which
we measure locally (and the only velocity we can measure
directly) is that of the photon at time of reception. This
velocity has a magnitude of ¢ as derived above. However,
these global relative motions are observable in the raisin
bread universe.

V1. DISCUSSION

The above process could have been described from the
point of view of the quasar. In that case we (the Milky Way
galaxy) were at a distance of 3.8 Geyrs and moving away
from the quasar at 2.8c when the photon was emitted. The
Milky Way has been decelerating with respect to the source
ever since. Currently we are 22 Gceyrs away from the qua-
sar and receding at a velocity of 1.2¢ relative to the quasar.
How is it that the photon, traveling at speed ¢ with respect
to every observer along its path, can overtake us?

There are two ways to answer this question, mathemati-
cally and conceptually. Mathematically, begin with the re-
quirement that the photon travel along a null geodesic [ Eq.
(4)]. In this equation notice that the photon will exper-
ience an infinitesimal coordinate dispiacement dy with
each lapse of infinitesimal proper time d¢ for finite a(z).
The equations of GR, by dictating the function a(¢), then
lead to a nonconvergent sum of the photon’s dy’s [shown
in Eq. (8)]. Thus the method of general relativistic cosmo-
logy used to describe the expansion of space (for this mo-
del) coupled with the requirement that the photon follow a
null geodesic, guarantees the photon will traverse any coor-
dinate separation given enough time.

Conceptually, the photon is swept away from us until
gravity has slowed the expansion rate of space to the degree
that the photon exists at a coordinate position with reces-
sional velocity ¢. (Refer to Figs. 1 and 2 for the remainder
of this section.) At this time the photon begins to approach
us. In other words, the photon must overcome only the
expansion effect that lies between it and the receiver.

The expansion of the universe must be viewed to occur
uniformly throughout all of space. The mutual recessional
velocity of any pair of IOs is a result of the entirety of
expanding space that exists between them. Thus the expan-
sion that occurs between the photon and the emitter will
not affect the photon’s motion toward the receiver. In fact,
if all the expansion occurred “behind” the photon in the
above example, then the photon would have reached our
coordinate position in only 3.8 Gyrs. Instead, with the uni-
form expansion of space, the photon traveled for 12 Gyrs.

Therefore, the mutual recessional velocity between
source and receiver at ¢> ¢, is immaterial to the photon’s
ability to traverse the space between them. The photon is
*“dragged away” initially, but always exists between the
emitter and receiver because it moves through the coordin-
ate system, whereas the emitter and receiver have fixed
coordinates. When gravity has slowed the expansion rate of
space so that the photon’s coordinate location is receding at
¢, the photon begins to approach the receiver. It may be, as
in the above example, that gravity does not slow the emit-
ter’s recessional velocity to v < ¢ before the photon arrives
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at the receiver, but that has nothing to do with the photon.
(See also Harrison’s explanation using the “Hubble
sphere”?® and Murdoch’s paper®! on the subject.)

VIL. CONCLUSIONS

First, in the flat matter-dominated cosmology model of
general relativity, it is possible for us to receive photons
from sources with Hubble recessional velocities greater
than ¢. Special relativity is not compromised in this result
because general relativity maintains SR only locally. In
fact, calculations with this model elucidate special relativi-
ty’s role in GR.

Second, the flat, matter-dominated GR cosmology mo-
del provides for derivations which can be presented in an
introductory calculus-based astronomy course. Further,
the formulas derived herein can be used by astronomy stu-
dents at all levels to obtain TOF distance, recessional velo-
city, and proper distance for large z objects. Thus the re-
sults are easily applicable and fully incorporate
gravitational effects.
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Quantum interference viewed in the framework of probability theory
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An additivity equality of probability theory is suggested to define (relative) noninterference.
Interference is deviation from this additivity. It is shown that two-slit interference fits into this
scheme. It is argued that the physical meaning of quantum interference is an observable deviation
of quantum filtering from quantum occurrence of events. The expounded view should restore the
essence of textbook treatment of interference in a precise and correct probability-theoretic
framework. The approach is essentially a continuation of a critical argument presented by

Ballentine.

1. INTRODUCTION

Ballentine has challenged’ (similarly as Koopman has
done?) the usual imprecise probability-theoretic discus-
sion of two-slit interference (that seems to go back to Feyn-
man®), as well as that of general interference, claiming that
itis erroneous. It seems to have remained unsettled if this is
a question of detail or of principle, i.e., if interference can be
understood within probability theory or not.

In this article it is shown that the essential content of the
usual discussion of interference can be given a precise and
correct probability-theoretic form (along the lines of Bal-
lentine’s argument). ,

We start with a sufficiently detailed (textbook) presen-
tation of two-slit interference. Let the state vector |W(¢))
describe a beam of neutrons hitting at the instant >0 a
screen with two slits in it (numbered 1 and 2). Picturing
the screen as an infinite one-dimensional x axis R,, we have
three disjoint regions R, ={x: x in slit 1}, R,={x: x in slit
2}, and R,=R, — (R, + R,) = {x: x in the screen}.

Introducing the corresponding disjoint (or exclusive)
quantum-mechanical events (orthogonal projectors)
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Plsf dx|x) (x|, PZEJ dx|x) (x|,
R, R,
and

POEJ dx|x) (x|,

one has P, + P, + P, = 1, and, in terms of state vectors,
[W(0)) = P,|W (D)) + Po|¥(2)) + Po|¥ (1))
=c|¥'(1)) + Py|¥(2)),
e=([|P ¥ )1 + [P ¥ (D))
Let the state vector
'(D)=U(T -0 |¥'(1) (1)

describe the beam, after passage through the two slits, hit-
ting at the instant 7> ¢ a second parallel screen. The map
U=U(T — t) is the unitary evolution operator between
the two screens.

We picture the second screen similarly as the first:
R,={X: — ® <X < }. There is a detector on this screen
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