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2 The Helsinki model*

The Helsinki model is defined by the following ingredients and principles:

There are two kinds of primitive nodes, each the inverse of the other under re-
flection around the horizontal axis, and each comprising a meeting-point of three
edges. If we interpret the edges as ‘particle world-lines’, then the nodes represent
two kinds of primitive ‘interaction”: ‘pair production’ and ‘pair annihilation’. (See
Fig. 1)

Each edge has one of three ‘flavours’, A, B or C.

Each node must be strictly inhomogeneous - i.e., comprising three edges of
different flavours — or strictly homogeneous (three edges of the same flavour).

Pair production and pair annihilation must alternate, when the primitive nodes are
linked together.

Successive homogeneous nodes are prohibited. (See Figs. 2 & 3)

‘Pair production’ ‘Pair annihilation’

Figure 1: The two basic ‘interactions’.



Figure 2: Disallowed — repeated homogeneous nodes.

Figure 3: Allowed — no repeated homogeneous nodes.

‘Future’

‘Past’

Figure 4: Adding a ‘time axis’.



Theory X per Relational
Blockworld

Here we follow the possibility articulated by Wallace (p 45) that, “QFTs as a whole are to
be regarded only as approximate descriptions of some as-yet-unknown deeper theory,”
which he calls “theory X.” Wallace, D.: In defence of naiveté: The conceptual status of
Lagrangian quantum field theory. Synthese 151, 33-80 (2006).



Worldtube 1 Worldtube 2

Composition of Trans-Temporal Objects (TTOs) — Six elements of spacetimesource
are shown in each TTO’s worldtube. A TTO is simply a compilation of such elements, as

they account for the spatial extent of the TTO and the time-identified properties J that

define the TTO. That the TTOs are themselves spatiallv separated means thev must share
elements of spacetimesource. so thev must exchange J (interact). One such element is
shown in this figure.




It

xo B
RG
RGY

RG e
RGY A S
RGY <=
RGY (

I

Worldtube 1 Worldtube 2

Analogy — The property Y is associated with the source J on the spacetimesource

element shared by the worldtubes. As a result, property Y disappears from worldtube 1
(Y Source) and reappears later at worldtube 2 (Y detector). While these properties are
depicted as residing in the worldtubes, they don’t represent something truly intrinsic to
the worldtubes, but are ultimately contextual’relational, i.e., being a Y Source only makes
sense in the context of/in relation toa Y detector, and vice-versa.




Self Consistency Criterion



Einstein’s equations of GR are a type of SCC, i.e., you
can’t solve for the metric on the LHS without the stress-

energy tensor on the RHS, but you can’t produce the
stress-energy tensor without a metric.
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Is there an adynamical underpinning? For EE'’s
it's the boundary of a boundary principle.



Harmonic oscillator on a graph
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Eigenvector for null space is [111111], so SCC = divergence—freei resides in column

space of K constructed from boundary operators over graph.

The SCC is our proposed fundamental axiom of physics, as its status in theory X is akin
to Newton’s laws of motion or Einstein’s equations of GR. Just as Newton’s second law
co-defines force and mass, and Einstein’sequations co-define the spacetime meticand
stress-energy tensor, the SCC co-defines relations and sources at the most fundamental
level of Nature. We will provide examples for the Schrodinger, Klein-Gordon, Dirac,

Maxwell, and Einstein-Hilbert actions.



Now that we have explained our SCC, our choice of gauge fixing is obvious. The

discrete, graphical transition amplitude is

-]

Z=I...T

-0 =00

do,..dQ, exp[i%@é- 0+ “Q}

with solution




However, K™ does not exist because K has a non-trivial null space. This is the graphical

characterization of the effect of gauge invariance on the computation of Z. Because we
require that J reside in the column space of K .the graphical counterpart to Fadeev-
Popov gauge fixing is obvious, i.e., we simply restrict our path integral to the column

space of K. Nothing of physical interest lies elsewhere, so this is a natural choice. In the

eigenbasis of & with our gauge fixing we have

2= 1. 0.0 o] ${ 1050,

.-} Na=l

where Qn are the coordinates associated with the eigenbasis of K and O, is associated
with eigenvalue zero, anis the eigenvalue of K corresponding to Qn .and J, _arethe

componentsof J in the eigenbasis of K.Our gauge independent approach gives
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Thus, we find that the self-consistent co-construction of space, time and divergence-free

sources entails gauge invariance and gauge fixing.



Non-Relativistic Scalar Field on Nodes

The non-relativistic limit of the Klein-Gordon (KG)equation gives the free-particle
Schrédinger equation (SE) by factoring out the rest mass contribution to the energy E,

assuming the Newtonian form for kinetic energy, and discarding the second-order time

Et)/a »

derivative. To illustrate the first two steps, plug @ = Ae"#*"'* into the KG equation and

obtain (— E'+pict + mzc"‘) =0, which tells us E is the total relativistic energy. Now

et

-

{797 into the free-particle SE and obtain 2— = E, which tells us E is

plug v = Ae
2m

only the Newtonian kinetic energy. Thus, we must factor out the rest energy of the

-

particle, i.e., w=e"™ ", assume the low-velocity limit of the relativistic kinetic

energy, and discard the relevant term from our Lagrangian density (leading to the second-

order time derivative) in going from ¢ of the KG equation to v of the free-particle SE.



Accordingly, start with the (1+1)D KG transition amplitude
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the non-relativistic KG transition amplitude corresponding to the free-particle SE
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The eigenvalues of Rarear = 0. a, = ST e —2im, and as = a2 + a3 with
m
1] [-1] [-1 (1]
, 1| |-1 1 -1 _ _
eigenvectors 1l 4 alp and | respectively. The eigenvectors form the Hx
1) [ 1] [ 1] [ 3 ]

Hadamard matrix and the eigenvalues are consistent with this fact, i.e., 0 and -2 times the

off diagonal entries of K . We choose J proportional to the unit eigenvector associated

with a2 (since it will give real J*), which is in keeping with the SCC. Computing Z per

Eq (10) and using this as a propagator with a delta function Source we have

2
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where Jo is the magnitude of J (Ar — ¢ and Ax — x for notational simplicity).



The corresponding QM propagator is obtained via the path integral withaction
S = J’l,{ﬂ) dt
2 \dt

y/(x,t)=A " cxp[lmx }ccxp[lmx ]
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which gives

with delta function Source y(x.0) =A49(x). In this view, a particle of mass m is moving

through space from Source to detector, so we call this a “mediated” view.

Comparing the exponents of theory X and QM we have J. = 2#x . Thus, in GR-like

fashion, we obtain a self-consistency relationship between source and space resulting

from our fundamental axiom of physics.



Both solutions are oscillatory. so it is easy to see how both results lead to twin-slit
interference. However, the results are quite different conceptually. Theory X was
obtained in spatiotemporally holistic fashion and the view of how its amplitudes are
combined is shown at the top of the next slide. By contrast, QM’s solution was obtained
dynamicallyand the view of how its amplitudes are combined is shown at the bottom of
the nextslide. This illustrates nicely that per theory X the interference pattern of the twin-
slit experiment does not entail “quantum entities” moving through space as a function of
time to “cause” detector events. Rather, interference is understood adynamically via

‘competition’ between fundamental elements of spacetimesource.

Again, in our view, physics is concerned with explaining the relative spatiotemporal
locations of TTOs and physics currently says TTOs are composed of smaller TTOs, i.e.,
smaller subsets of trans-temporally identified properties (fundamental particles). We
propose a more fundamental decomposition of TTOs in terms of spacetimesource
elements. Accordingly. quantum physics is telling us something very important about the

composition of TTOs, i.e.. their properties combine via interference at the level of

spacetimesouce elements.
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Scalar Field on Nodes
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The eigenvalues of R are a1=0, a, = —2(ﬂ - ﬁzAtAxJ, a, = 2;“ andas=ax + a3
i Ax At
1] [-1] [-1]  [1]
_ _ 1] |1-1] |1 -1 _ _
with the same eigenvectors Nop At and A respectively, again we have the
1 [1] |1 L1

Hi: Hadamard matrix with eigenvalues of 0 and -2 times the off-diagonal entries of K.As

with the non-relativistic case, we choose J proportional to the unit eigenvector associated

with a2. In this case, our Z gives (dropping A)

¢(x"t) o cxp ' -
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Again, we wish to compare with the mediated counterpart, so we compare with the two-

point correlation function forthe free scalar field
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Comparing the exponents we obtainJ 4(— + 7t )(px —Et). Here the SCC leads to

the self-consistent relationship between source, time, space, mass, momentum, and

energy. To see how this reduces to our non-relativistic result, we first reintroduce the

scaling factor «J% so that

a,=-— C—At o AtAY | = =2 —N+ﬁAtAx =-2 Rat mc Athx . Then our non-
- Ax mAx mAx h

relativistic result follows from h—- +mtx—> -h—t o PP m and E=- »q( ) as we would

mx mx

expect.



Vector Field on Nodes

We apply this approach to vector fields on nodes and note that the KG operator for scalar

fields is the square of the Dirac operator for vector fields. i.e..

ijzfQ# —mliy“8,—m)= (52 +Qf)“ In order to construct K for the Dirac operator on

the hypercube we have thefollowing linkweights on 7. x. y. and z links respectively:
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Then the 64 x 64 matrix K is simply givenby:
_[(—T-X-Y-z) ZYO0X ]

This has the same form as K for the Schrodingerand the KG actions. Thatis, reading

across the rows for each node one simply has a collection of the link weights relating the

nodes which are connected. Thus, we can understand how K instantiates graphical

relationalism and divergence-free J per the SCC as follows.

Each row of K is a vector constructed relationally via the connectivity of some graphical

element,i.e., nodesconnected by links, links connected by plaquettes. or plaquettes

connected by cubes. Sinceeach vectoris relationally defined, its elements sum to zero,

which means[111...]isa null eigenvector of K. Thus, the determinant of K is Zero, so

the set of row vectors is not linearly independent. That some subset of the vectors is

determined by its complementfollows from having the graphical set relationally defined.

Therefore, divergence-free J follows from relationally definedK asa consequence of our

SCC.
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To study the eigenstructure, we point out that K isin nested form. K, = [TI F :|

B XI}.

where 77 is the 8x8 identity matrix/ times 7'and 4 is the 8x8 matrix 4= [}g B

C H D ZI
Continuing the nesting we have B = whereC = and
¥ € ZI D

D= [— T-X-Y-Z ] . The eigenvalue problem for K then takes a nested form in terms of
Hadamard matrices H1, H2, H1, Hs, and His as follows. DH, = H, [— T-X-Y- Z] where

1 1 1 1|-T-X-Y 0 1 1
H=[1].C = where H, = :
1 -1 1 -1 0 -T-X-Y-27 11 -1

BH,=H diag-T-X~T-X-2Z-T-X -2Y.-T - X —2Y -2Z| where

1 1 1 1]
i =1 1 =]
H,= .
i 1 =i =i
1 -1 -1 1




AR =F diagl -¥- 732 F - F-7 -3 0% -7 T I -9 - T -7

H, H =
where H, = |:H4 I-.; ] =H,®H,.Thus, K,;,.H¢ = H,diag|vector| where
4 ~— 444

H, = H,®H, and

X+Y
X+Y+2

Y 3

T+2Z

T+Y
T+Y+Z
T+X
T+X+2,
T+X+Y

| T+ X+Y+2Z]

vector = —2




Finally, the eigenvalue problems for each of the 4x4 matrices in vector are solved and the
eigenvectors are located in a 64x64 matrix built from His. So, for example, the first

columnof Hisis [111...] and the four-dimensional null space is be spanned by [1,0,0,0],
[0,1,0,0], [0,0,1,0] and [0,0.0,1], so the first four columns of the eigenbasis matrix fork

are (column entries top to bottom read left to right here):

{{0,0,0,1%,09,00910,0091,000901,00901,00010001°9090911°90090100900100,
¢01,0001,00901%0090091%090909,}1°0°090,.1},(,0130001%0009010600010001,00,
¢1,0001,0001%0001%09001%0001%0001%000100010001,0001,0}

{0,1,09,0,091,090091,00091,090901300090100010001000100010001,0,
¢ 013%09001,00091,09009:13°009010.01,09°009110900100010001000,]1,
¢ 00901,00010001%0001000100010001,00900100010001,00 0}

J being orthogonal to each of these vectors simply means that the global sum over each

spacetime component of J at each node gives zero, as required for vector addition overall 16

nodes.



Scalar Field on Links

We now apply this approach to gauge fields for the exchange of energy via photons. In
order to model the construct of action for the exchange of energy via photons, we use the

Maxwell Lagrangian density L for free electromagnetic radiation

1 s
L=-—F%F,

du,
with thefield strength tensor given by

Fo=0,45-044, = (Aﬁ("*”‘f)-Aﬁ(”))_ (Aa(n +,f)- Aa(n))
» /5

on the graph where n is the node number, £; the lattice spacing in the i direction, and &

and f are displacements to adjoining nodes in those directions.



Applying this to the (1+1)D case Kis

1 1 1 1
x?2 x?2 tx tx
1 1 1 i |
x2 x2 tx tx
1 1 1 1
Ix & t2 t2
1 1 1 1
tx tx tz t2

4u,

where we have ignored overall factors and the volume of the element, andc=1. The

eigenvaluesare 0, 0, 0;&2( 1, - L,) . The dimensionality of the column space represents

-

x &

the degrees of freedom available with local conservation of J . Thatis, specifying J on

just one link dictates the other three values per conservation of J on the links at each

node.



On the cube R IS
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The eigenvalues for Rare

2(t2+x%)  2(t2+y%)  2(x%+y%) 20t + iy +atyd)  2(tAa + Pyt +xtyd)

{0,0,0,0,0,0,0,_ tzxz ] tzyz ’ xzyz ’ tzxzyz ’ t2x2y2

Again, the dimensionality of the column space (five) represents the degrees of freedom
available with local conservation of J . Thatis, specifying J on the four links of one face
(front, say) gives J on the links connecting the front face to the back face by local

conservation. Then specifying J onjust one link of the back face specifies the remaining

links by local conservation.



K for the hypercube is too large to display here, butits eigenvaluesare

{{o, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0}, {-% - %}
2 2 2 2 2 (t2 - x? 2 2 (t2+x2) 2

(-5-3)} (530 B 3L - B

2 2 E: 9 2 (t?-x? 2 2 (t2+ 2 2 2

(5-5) G5 B B e - B G 3

- J- - Q. 2, " 2

{Z(tézyzy ) _;22_} {_2(22;) _%} {2(:2;) _%’ 2(;; ) ’232,}
2(?*=+e2-x2y?) 2 2(e2x*+t29¥-2y?) o2 2 (232 +t2y2 a2 y2) 2
{ £2 x2 y? ™ L £2 %2 y2 ’;}' {' P s .

Again, the dimensionality of the column space (17) represents the degrees of freedom
available with local conservation of J . If we specify J on all 12 links of the “inner” cube,
all the time-like links connecting the “inner” cube to the “outer” cube are determined by

local conservation. Then if you specify the 4 link values on one face of the “outer” cube,

local conservation leaves only one free link to specify on the opposite face, giving
12+4+1=17.



Scalar Field on Plaquettes

This is linearized GR. i.e.. the hammonic terms only. We have for the Einstein-Hilbert

Lagrangian density

L=-0,h,0"h™ +26,h,6"h™

omitting trace terms gauge equivalent to 28 ,h; whichwould be used for juxtaposed

graphical elements, i.e.. a more complex arrangement. To discretize this on the hypercube
we first label our scalar field on each plaquette according to its span. For example, the
front face of the “inner” cube is spanned by x and z, so it’s labeled h13. Of course, there
are three other such plaquettes. one displaced from the front towards the back (in y) of the
“inner” cube, one displaced in 7 to the front of the “outer” cube, and one displaced in ¢
and y to the back of the “outer” cube. There are six fields (ho1, ho2. ho3, h12, hi3, h23) which
generate such a quadruple, accounting for all 24 plaquettes of the hypercube. Likewise,

for the cube we have (ho1, ho2, h12) and their pairing partners giving us the six plaquettes.



We see that the first termof S is just the sum of the squares of the gradientsformed in

each set of hqp values, e.g.,

( Iy (back —in) by (front - in))2 . (hu (back - out )  hy,(front - out )J .
\ ¥ b 4 y y
( hy(back —out ) by (back — in ))’ " ( h,, (front - out ) by (front — in ))2

\ ct ct ct ct

for hi3 where “in” stands for “inner” cube and “out” stands for “outer” cube. The second

term of S is formed by mixing gradients, justas with the photon field. For example, we
would have terms like (8,4, )8, /,, )which on the lattice would have forms suchas

(hu (front — out ) _hy (front - in)}[ hy, (back —in) _hy (front — in ))
[ 4 y y




Using these conventions on the cube (again, ignoring overall scaling factorsand letting

c=1). Kis
1 1 1 1 1 1
£ t? ty ty tx tx
1 1 1 1 1 1
I ty ty tx tx
1 1 1 1 1 1
ty ty x2 x2 Xy Xy
1 1 1 1 1 1
ty ty » el Xy Xy
1 1 1 1 1 1
tx tx Xy Xy y2 y?2
1 1 1 1 1 1
tx tx xy Xy y: =

which looks much like & for the (1+1)D scalar field on links.



The eigenvalues of Kare

Xy — x2y2 + 4t2(x% + yz) Xy +/x2y% + 4t2(x2 + y?)
tZxy tZxy )

{0,0,0,2 (xi2 F =)
and a basis for the nullspace is
{{0,0,0,0,1,1},{0,0,1,1,0,0},{1,1,0,0,0,0}}
which represents conservation of J among each pair of plaquettes associated with

(ho1. ha, h12). [Of course, the rows of K sumto zero 50, as always, [111...]is a null

eigenvectormeaning we have global conservation of J .]



£ for the hypercube is too large to display here, but one null eigenbasis is
{{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,00,1,1,1,1,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,00,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},{1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}
J orthogonal to each of these null eigenvectors means it is conserved across each set of

four plaquettes associated with (ho, hoa, hos, hia, hi3, ho3). We point out that thisnull

space structure exists for the gauge equivalent form L =-¢, haﬁc"’:ha’e on the lattice, but

we included the mixing terms for comparison with the particular gauge choice in the

photon case.



The Standard Model

Strictly speaking, when finding the gradient of a vector field on the graph as we did with
the Dirac operator, we need to specify a means of parallel transport. So, in our view and
that of LGT, local gauge invariance is seen as a modification to the matter field gradient
on the graph required by parallel transport per Uy, i.e.,
U~ — U, —
y“Dy = }’0( o‘l:ot W]+,/1[ 15”; W]+_._

ith

\{M

where 7, is the complex vector field on the node adjacent to ¥in the positive

1

F “’gFaﬁ is therefore seen
4u,

1 (., »
direction. The Lagrangian density L = :—Zw(/ B~ m)w—
as the addition of parallel transport Uy and a curvature term A’ (:8;82 )A . Where A4

generates Uy, to L= %u_/( 1}6;81 )ul to produce a well-defined field gradient between ¥,
\

and ¥ . Thus, the action of the Standard Model results from the self-consistent co-

construction of space, time and sources via field gradients on the graph as ultimately

underwritten by the SCC.



If one introduces two vectors at each node, this same standard requires

7*Dy=7"

i)
¥y

1

ct

EF

1

Con Con !7702 w? Cn Cp !7712 w?

X

where the matrix Cysp is an element of SU(2) associated with the link in the positive ut®

1

-
-

direction from |:W

] . Again, we have the same form for our field gradients, i.e., the
W

nodal field gradients weighted by the link field, which still contributes a gradient to the

action — 4—12-(F WF;) (sum over a) where g is the coupling constant,
g

FS =08,A45-8,A4%+ f* 4] 4 (sum over b and c) and £2% are the structure constants of

SU(2). The pattem is extended to SU(3) for three vectors at each node and all possible
mixing between U(1), SU(2) and SU(3) forms the Standard Model.
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Lagrangian density for Standard Model
Credit: T.D. Gutierrez



With this understanding of the Standard Model, we see that the next logical addition to
our collection of fundamental spacetimesource elements would be those constructed from
the gradient of vector fields on links. The scalar field on plaquettes (basis for quantum
gravity) would define parallel transport for this field gradient in the mannerscalar fields
on links defines parallel transport for the vector fields on nodes. Thus, underwriting
TTOs via spacetimesource elements leads to a relatively simple picture of unification
(next slide) compared to that based on fundamental particles (previous slide). However,
while we do not view particle physics as the study of what is ultimately fundamental in
Nature, it has been essential to understanding how the fundamental elements of

spacetimesource are to be combined, and what properties are represented by J .



Unification and Quantum Gravity per Theory X:
The fundamental elements of spacetimesource

Scalar field on
nodes

Scalar field on
links

Scalar field on
plaquettes

One vector each
node

Two vectors each
node

Three vectors each
node

One vector each
link

Two vectors each
link

Three vectors each
link




The major questions to be answered in this view of unification are clear. Is there a limit to
the number of vectors that can be (or need be) introduced on nodes and links? If so, does
it have to do with information density? Is it related to quark confinement? Or, is there a
purely mathematical fact that underwritesit? Why is there no physical counterparttoa
scalar field on cubes? Is this because it requires (4+1)D to close graphically and satisfy
the boundary of a boundary principle for all graphical entities? What physical objects
correspond to vector fields on links? Are they just quarks and leptons interacting
gravitationally? Or, will this generate new fermions that onlyinteract gravitationally, e.g., .
dark matter? How many terms in the lattice Einstein-Hilbert action are trulyneeded to
accountforall observed phenomena, i.e., how much of GR will remain? Will we need
sources that are functions of h.p? Obviously, the program of unification changes non-

trivially in this approach. We next explain particle physics per theory X.



In our approach, the role of the field is very different than in QFT where it pervades
otherwise empty, continuous space to mediate the exchange of matter-energy between
sources. Per theory X (and that of LGT), a field is simplyv a map of scalars and vectors to
the graph. One obtains QFT results from LGT by letting the lattice spacing go to zero. In
fact, one can understand QFT renormalization through this process of lattice
regularization®?)_ As it tumns out, however, this limit does not always exist, so calculated
values are necessarily obtained from small, but non-zero, lattice spacing. With this
picture in mind, we can say simply what we are proposing: The lattice is fundamental,
not its continuum limit. Once one accepts this premise, it’s merely a matter of degree to

have large spacetimesource elements, which is the basis for our explanation of the twin-

slit experiment and dark energy (below). In this approach, there is no graphical
counterpart to “quantum systems” traveling through space as a function of time from
Source to sink to “cause” detector clicks. This implies the empirical goal at the
fundamental level is to tell a unified storv about detector events to include individual
clicks —how they are distributed in space (e.g.. interference pattems, interferometer
outcomes, spin measurements), how they are distributed in time (e.g., click rates,
coincidence counts), how they are distributed in space and time (e.g., particle
trajectories), and how they generate more complex phenomena (e.g., photoelectric effect,
superconductivity). Thus in theory X, particle phvsics per QFT is in the business of

characterizing large sets of detector data.i.e., all the individual clicks.
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Implications for Quantum Physics?
Particle Physics not fundamental

RBW — Modification to General Relativity
Modify GR via Regge calculus

Start with easiest GR solution, Einstein-de Sitter cosmology (EdS)
Photon exchange over cosmological distances, type la supernova

Union2 Compilation data is distance modulus vs redshift to z=1.4

1 =5log Dy
10pc

D
Linear regression log(afc] vs log(z) SSE = 1.95 and R = 9955

DL — ( 1 +Z)dp

Best fit EAS SSE = 2.68 using H, = 60.9 km/s/Mpc (t, = 10.7 Gy)
Current (2011) “best estimate™ H, = (73.8 £ 2.4) km/s/Mpc

Best fit ACDM SSE =1.79 using 2, =0.71, Qy; = 0.29 and
H, =69.2 km/s/Mpc
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Plot of Union2 Compilation data of distance moduli u
versus redshifts z for type Ia supemovae. Superimposed are
the best fits for EdS (green). ACDM (blue). and MORC
(red). The MORC curve is terminated at z = 1.4 in this
figure so that the ACDM curve is visible underneath.



Regge Calculus

Deficit angle, §

Figure 42.1. .

A 2-geometry with continuously varying curvature can be approximated arbitrarily closely by a polyhedron
built of triangles, provided only that the number of triangles is made sufficiently great and the size of
each sufficiently small. The geometry in each triangle is Euclidean. The curvature of the surface shows
up in the amount of deficit angle at each vertex (portion ABCD of polyhedron laid out above on a
flat surface). T

Reproduced from Misner, C.W., Thorne, K.S., Wheeler, J.A
Gravitation. W.H. Freeman, San Francisco (1973), p. 1168.



Hilbert action for a 4D vacuum lattice

1
]R - giAi
87[ cr)eL

The counterpart to Einstein’s equations

Iy
5

Sy S,

& 8

J

Stress-energy tensor 1s associated lattice edges

Regge’s equations are to be satisfied for any particular choice of
the two tensors on the lattice.

Thus, Regge’s equations are, like Einstein’s equations, a self-
consistency criterion for the stress-energy tensor and metric.






(a)

Figure 5. (a) Triangle AA'H’ and its entourage. (b) Triangle AA’B’ and part of
its entourage: AA'B'D’', AA'B'H', AA'B'F’. (c¢) Triangle AA'G’ and part of its
entourage: AA'G'C’, AA'G'H', AA'G'E'’



Following Brewin[51] and Gentle[52], we take the stress energy in the AA’ edge to

be of the form
12G'm

c2(icAt)
Given there are six triangles of the type AA’B’ for the edge AA’, our Regge equation is
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T — COS (m) — 2cos (2,/02/CQ+2 G'm

VoIS =3
which we emphasize is unmodified Regge calculus. If v?/¢* < 1, then a power series
expansion of the LHS gives

v? v\4 Gm
4c2 T e 2rc®
. . . P Gmo .
Thus, to leading order, our Regge EdS is EdS, 1.e., 5 S which is just a Newtonian
r

conservation of energy expression for an unit mass moving at escape velocity v at
distance r from mass m.



D, :(1+z)1/Dp -Dp

ds* = —=c’dt* +dD;
up = MNop T hop

D, -D,=(1+h,)D’
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Best fit MORC SSE = 1.77 using R = A" = 8.38 Gey and

m=1.71x 10> kg. This gives H, = 73.9 km/s/Mpc



log(D; /Gpe)

log(z)

Plot of transformed Union2 data along with the best fits for

linear regression (gray), EdS (green), ACDM (blue), and
MORC (red).



Best fit line through log(D, /Gpc) versus log(z) gives a correlation of 0.9955
and a sum of squares error (SSE) of 1.95.

The best fit ACDM gives SSE = 1.79 using Ho = 69.2 km/s/Mpc, Q,, = 0.29
and Q, = 0.71.

The parameters for ACDM yielding the most robust fit to(") “the Wilkinson
Microwave Anisotropy Probe data with the latest distance measurements
from the Baryon Acoustic Oscillations in the distribution of galaxies and the
Hubble constant measurement” are Ho = 70.3 km/s/Mpc, Q,, = 0.27 and
Q,=0.73.

The best fit MORC gives SSE = 1.77 and Ho = 73.9 km/s/Mpc using
A-1=8.38 Gey and m = 1.71 x 10%2 kg.

The best fit EAS gives SSE = 2.68 using Ho = 60.9 km/s/Mpc.
(1) Komatsu, E., et al.: Seven-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Cosmological Interpretation.
http://arxiv.org/abs/1001.4538. (2010)

Can dark matter be eliminated in this fashion?



