
BOOLEAN IDENTITIES 
To be referenced by number in EGR/CS332, 333, and 433 

 
 
 

    
                           (18)   
 
X’ is the inverse of X and will be referenced as X in 
EGR/CS332,333, and 433.  Please use this notation. 
( The X’ notation is just easier for typing) 
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“XOR” (i.e., Exclusive Or) Operation 



Two's Complement 
By Thomas Finley, April 2000  http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#fromtwo 
 
Two's complement is the way computer represents integers.  
Conversion to Two's Complement 
Suppose we're working with 8 bit quantities and find how -28 is expressed in two's complement. 
 

 First write 28 in binary. 
00011100 
Then invert digits.  
11100011 
Then add 1. 
11100100 

 

Conversion from Two's Complement (DO SAME THING !) 
Use number 0xFFFFFFFF (i.e., in HEX) 

In binary: 
1111 1111 1111 1111 1111 1111 1111 1111 
 

It's leftmost bit is 1, which means it represents a number that is negative.  
A leading 1 means number is negative, a leading 0 means positive. 
 

Invert digits: 
0000 0000 0000 0000 0000 0000 0000 0000 
Then add 1. 
0000 0000 0000 0000 0000 0000 0000 0001 

 

So 0xFFFFFFFF in 2’s compliment is -1 
 

Arithmetic with Two's Complement 
One of the nice properties of two's complement is that addition and subtraction is made very 
simple. With a system like two's complement, the circuitry for addition and subtraction can 
be unified, whereas otherwise they would have to be treated as separate operations. 
 

Example 1: Add 69 and 12. If we use decimal, the sum is 81. But let's use binary. 
                                                   

  0000 0000 0000 0000 0000 0000 0100 0101 (69) 
+ 0000 0000 0000 0000 0000 0000 0000 1100 (12) 

    0000 0000 0000 0000 0000 0000 0101 0001 (81) 
Example 2: Subtract 12 from 69.  Now, 69 - 12 = 69 + (-12). 
To get the negative of 12 we take its binary representation, invert, and add one. 
0000 0000 0000 0000 0000 0000 0000 1100 
Invert the digits. 
1111 1111 1111 1111 1111 1111 1111 0011 
And add one. 
1111 1111 1111 1111 1111 1111 1111 0100 
The last is the binary representation for -12. As before, we'll add the two numbers together. 

  . 
  0000 0000 0000 0000 0000 0000 0100 0101 (69) 
+ 1111 1111 1111 1111 1111 1111 1111 0100 (-12) 

    0000 0000 0000 0000 0000 0000 0011 1001 (57) 

http://www.cs.cornell.edu/%7Etomf/notes/cps104/twoscomp.html#fromtwo


We result in 57, which is 69-12. Note that the leftmost sum will have a carry out which is 
ignored here. 
Example 3: Lastly, subtract 69 from 12.  
12 - 69 = 12 + (- 69). 
 The two's complement representation of 69 is the following 
1111 1111 1111 1111 1111 1111 1011 1011 
So we add this to 12.  

       . 
  0000 0000 0000 0000 0000 0000 0000 1100 (12) 
+ 1111 1111 1111 1111 1111 1111 1011 1011 (-69) 

    1111 1111 1111 1111 1111 1111 1100 0111 (-57) 
This results in 12 - 69 = -57, which is correct. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CS/EGR 332 
COMBINATIONAL DIGITAL CIRCUIT DESIGN EXAMPLE 

JT Wunderlich PhD 
 
The system below is designed using J Wunderlich’s eight steps for digital combinational logic circuit 
design to detect the number of bubbles in a chocolate bar, and open a trap door on a conveyer belt when 
the number of bubbles EXCEEDS the number on a selector switch. 
 
1. Define Problem   
 

 
 

• F = 1 IF x > y were x and y can be 0, 1, 2, or 3. 
• F = 1 if “FAILS TEST”  → Trap door opens 
• Assume x can’t be > 3, and address this assumption later 

 
 
2. Encode Input and Output Variables into Binary from Analog values 
 

Our problem has 4 analog values per variable (i.e., 0.1.2.3), so: 
2n = 4 
     n = 2 Binary Bits needed per 
 Analog 
 variable 

 
 

x x1 x0 
0 0 0 
1 0 1 
2 1 0 
3 1 1 

 

 
y y1 y0 
0 0 0 
1 0 1 
2 1 0 
3 1 1 

 

Analog value of F is 1, so no need 
to encode it into Binary: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

This notation 
means two wires 

Image 
Processing 



 
3. Create Truth-Table 
 
(22) x (22) = (22+2) = 24 = 16 Cases, so table needs 16 rows 

                               
For x      For y           4 Input variables 
                                                                    X                 Y 

 
case 
# m 

x1 x0 y1 y0  
F 

0 0 0 0 0 0 
1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 0 1 1 1 0 
8 1 0 0 0 1 
9 1 0 0 1 1 
10 1 0 1 0 0 
11 1 0 1 1 0 
12 1 1 0 0 1 
13 1 1 0 1 1 
14 1 1 1 0 1 
15 1 1 1 1 0 

 

                                                                 Output F = 1 if input x > input y 
 

4. Find a Simplified Boolean Function 
• Using Simplification Maps to find Minimal Sum of Products (SOP)  

o  i.e., an OR is a logical sum, and an AND is a logical product 
• We will spend a couple weeks learning how to derive and use all 1,2,3,4, and 5 variable versions of 

these maps 

 
 Minimal SOP = F = 00111010 yxxyxyyx ++  

 
 
 
 
 

Important to start with 
the number 0 to 
represent the case 
0000 when all binary 
input bits are zero 



Proof of Simplification Map Using Boolean Algebra 
(THIS IS NOT A REQUIRED STEP OF THE DESIGN PROCESS) 

 
F = m4 + m8 + m9 + (m12 + m12 + m12) + m13 + m14 

( )124 mm +  

( )01010101 yyxxyyxx +  

( )( )01011 yyxxx +  

( )( )0101 yyx  

( )010 yyx  

 

( )1412 mm +  

( )01010101 yyxxyyxx +  

( )( )00111 yxxyy +  

( )( )0011 yxx  

( )001 yxx  

131298 mmmm +++  

0101010101010101 yyxxyyxxyyxxyyxx +++  

( )( )10100 yxxyy +  + ( )( )10100 yxxyy +  

( )( )1011 yxx  + ( )( )1011 yxx  

( )101 yxx  + ( )101 yxx  

( )( )1100 yxxx +  

( )( )111 yx  

( )11yx  

 
 
 
 
 
 
 
 
5. Logic Circuit Diagram (using “Rail Logic”) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These vertical lines are called “Rails” 
and are an industry standard 



6. Possibly Convert to all NAND gates (ONLY IF ASKED FOR) 
   (This is common for VLSI implementations because 
     NAND gates require less area on a silicon chip) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Chip Circuit Diagram (not using NAND’s) for implementing our Logic Circuit    
 

 
 
 
 
 
 
 
 

Two different ways to represent a 
NAND gate 

Just add Circles to represent “NOT’s 
and make sure you add one to both 
ends of each wire so they cancel each 
other, and therefore don’t change the 
functioning of the circuit 
 
NOTE: If one input to the OR gate does 
not connect to an AND gate (i.e., is 
coming directly from a Rail), insert an 
INVERTOR gate made from a two-
input NAND gate with both inputs tied 
together 

5 VOLTS 

0 VOLTS 



 
8. Check Assumptions made in first step 

 
Examine our assumption that x can’t be greater than 3 bubbles. 
  If we let x be as big as 255, x would need 8 bits to encode it into binary, and our truth table  
   would look like this: 

 
X7 x6 X5 x4 x3 x2 x1 x0 y1 y0 F 

 
210 = 1024 Rows !!! 

 
 
 
 
HOWEVER, an AD HOC SOLUTION to this problem is:  

 
 

 
 
 

i.e., If any higher ordered bit to the left of the two bits used by our circuit is a 1, 
the OR gate will produce a 1, 
 
And this will occur if the image processing system detects more than 3 (i.e., 
Binary 11) bubbles 
 
 
 
 
 
 
 

 

Image 
Processing 



 





 



 
 





 



 
EXAMPLE #1 
Design a BCD (Binary Coded Decimal) counter using T flip-flops, and the simplest circuitry possible (i.e., this means don’t have an input, and connect a 

push-button switch to the Flip-Flops).  Also, this counter resets to zero after nine. Don’t force the unused states to go anywhere. And as usual, don’t try 
to “minimize the machine,” convert to NAND’s, or create a Chip Circuit Diagram (i.e., only do these things when specifically asked for). 
 

STEP #1  Define The Problem (with a Block Diagram) 
 

Let’s not have an input to trigger each count, but instead let’s act as the clock by substituting  

  a push-button switch tied to the positive terminal of our power supply (which is equivalent to a Logic-1)  
 

 

 

 

 

 

STEP #2 Draw State Diagram. 

 

 No need to label transition-arrows since there are no inputs 

 (Thanks to our acting as the clock)  
 

Also, we can use state variables for outputs 
 

 

 

 

 

STEP #3  Encode Variables  Already Binary. And we need four State Variables here (A,B,C,D) for the four bits used for BCD 

STEP #4  Minimize Machine  (not done in EGR/CS332) 

STEP #5  Make State Table 

                 There are no output columns since we are using the state variables for outputs 
 

                                                                                                                                                                            STEP #6 Append flip-flop inputs using excitation tables  

                 ( using EXCITATION TABLE for T Flip-Flop for this problem ): 

                          Present State   Next State       T Flip-Flop Input 

                                    Q(t)             Q(t+1)          to achieve Q(t+1) 

                   0                   0                       0                   No Change 

                   0                   1                       1                   Toggle 
                   1                   0                       1                   Toggle 

                   1                   1                       0                    No Change 

                 STATE TABLE 
PRESENT NEXT                      

 STATE STATE FLIP-FLOP  

Q(t) Q(t+1) INPUTS  

A B C D A B C D Ta Tb Tc Td m 

0 0 0 0 0 0 0 1 0 0 0 1 0 

0 0 0 1 0 0 1 0 0 0 1 1 1 

0 0 1 0 0 0 1 1 0 0 0 1 2 

0 0 1 1 0 1 0 0 0 1 1 1 3 

0 1 0 0 0 1 0 1 0 0 0 1 4 

0 1 0 1 0 1 1 0 0 0 1 1 5 

0 1 1 0 0 1 1 1 0 0 0 1 6 

0 1 1 1 1 0 0 0 1 1 1 1 7 

1 0 0 0 1 0 0 1 0 0 0 1 8 

1 0 0 1 0 0 0 0 1 0 0 1 9 

1 0 1 0 ? ? ? ? X X X X 10 

1 0 1 1 ? ? ? ? X X X X 11 

1 1 0 0 ? ? ? ? X X X X 12 

1 1 0 1 ? ? ? ? X X X X 13 

1 1 1 0 ? ? ? ? X X X X 14 

1 1 1 1 ? ? ? ? X X X X 15 

0000 

0001 

0010 

0011 

0100 0101 

0110 

0111 

1000 

1001 

DESIGN of Counters (Digital Synchronous Sequential Circuits)          by J. Wunderlich PhD           LAST REVISION: 11/02/17 

 Logic-1 



 

STEP #7  Simplify flip-flop inputs using maps 

 

 
 
 

    

  1  

x x x x 

 1 x x 

 
 
 
 
 
 
 
 
 
 
 
STEP #8  Draw Logic circuit 
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STEP #9  Convert to NANDS  Not asked for 

STEP #10  Analyze unused states using flip-flop characteristic table   After you fill in the part of the table evaluating all Flip-Flop Inputs,  

                  and remembering your Flip Flo input functions:                                                                                  use the T Flip-Flop CHARACTERISTIC TABLE to look at each State Variable: 

 

Ta = AD + BCD    Flip-Flop Input       What happens to State Variable at next clock edge 

Tb = CD               T                                                     Q(t+1) 

Tc = AD                                                                                                  0                                  Q(t)        No Change 

Td = 1                                                                                                       1                                                       Q(t)        Toggle 

            

PRESENT CALCULATE NEXT 

STATE FLIP-FLOP STATE 

Q(t) INPUTS Q(t+1) 

A B C D Ta Tb Tc Td A B C D 

1 0 1 0 0 0 0 1 1 0 1 1 

1 0 1 1 1 1 0 1 0 1 1 0 

1 1 0 0 0 0 0 1 1 1 0 1 

1 1 0 1 1 0 0 1 0 1 0 0 

1 1 1 0 0 0 0 1 1 1 1 1 

1 1 1 1 1 1 0 1 0 0 1 0 

 
STEP #11  Re-draw state diagram to show unused states 

 
 
 
 
 
 
 
 
 
 
 
 
 

STEP #12  Chip Circuit Diagram (only when asked for in EGR/CS332) 

STEP #13  Review assumptions  None made (other than we don’t want to force the unused state anywhere for the given problem – however, in reality you probably want to force your machine to 

reset if an unused state occurs – i.e., force it back to the initial state because the unused state is most likely an error) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0000 
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0010 

0011 

0100 0101 
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1000 
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1100 1101 
1010 1011 

1111 1110 



EXAMPLE #2 
 Given the following State Diagram, state in words what it is doing, then draw the block diagram, then continue all 
the design steps. Use JK flip-flops, and use the simplest circuitry possible (i.e., this means don’t have an input, and connect a 

push-button switch to the Flip-Flops). And as usual, don’t try to “minimize the machine,” convert to NAND’s, or create a Chip 
Circuit Diagram (i.e., only do these things when specifically  asked for). 
 

 

 

 

 

 

 

 

 

 

 

 

In words, what this is doing: This is a counter that counts from 000 to 001 to 010 to 100 to 101 to 110, then resets to 000 

STEP #1  Define The Problem (with a Block Diagram) 
 

Let’s not have an input to trigger each count, but instead let’s act as the clock by substituting  

a push-button switch tied to the positive terminal of our power supply (which is equivalent to a Logic-1)  
 

 

 

 

 

 

STEP #2  Draw State Diagram.  GIVEN 

STEP #3  Encode Variables  already Binary. And we need three State Variables (A,B,C) for the three bits used in the given count 

STEP #4  Minimize Machine  (not done in this course) 

STEP #5  Make State Table 

                 There are no output columns since we are using the state variables for outputs 
 

                                                                                                                                                                            STEP #6 Append flip-flop inputs using excitation tables  

                 ( using EXCITATION TABLE for JK Flip-Flop for this problem ): 

                       Present State   Next State      JK Flip-Flop Inputs 

                                Q(t)             Q(t+1)            to achieve Q(t+1) 

           0                   0                       0  X       No Change (00) or Reset (01) 

           0                   1                       1  X       Set (10)  or Toggle (11)             

           1                   0                       X  1       Reset (01) or Toggle  (11)              
           1                   1                       X  0       No Change or Set                 

                                  STATE TABLE 
PRESENT NEXT        

STATE STATE FLIP-FLOP    

Q(t) Q(t+1) INPUTS    

A B C   A B C   Ja Ka Jb Kb Jc Kc m 

 0 0 0  0 0 1  0 X 0 X 1          X 0 

0 0 1  0 1 0  0 X 1 X X 1 1 

0 1 0  1 0 0  1 X X 1 0 X 2 

0 1 1  ? ? ?  X X X X X X 3 

1 0 0  1 0 1  X 0 0 X 1 X 4 

1 0 1  1 1 0  X 0 1 X X 1 5 

1 1 0  0 0 0  X 1 X 1 0 X 6 

1 1 1  ? ? ?  X X X X X X 7 
 

000 

110 

101 

100 

010 

001 

 Logic-1 

Don’t move the unused states from 
the row corresponding to the 
midterm that represents it; this is to 
preserve the integrity of the 
Simplification Maps and the order 
of all the cells within them 



 

 

STEP #7 Simplify flip-flop inputs using maps 
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STEP #9  Convert to NANDS  not asked for 

STEP #10  Analyze unused states using flip-flop characteristic table   After you fill in the part of the table evaluating all Flip-Flop Inputs  

                      and remembering your Flip Flop input functions:                                                                         use the JK Flip-Flop CHARACTERISTIC TABLE to look at each State Variable: 

         

Ja = B                           Flip-Flop Inputs         What happens to State Variable at next clock edge 

Ka = B               J   K                           Q(t+1) 

Jb = C                                                                                      0  0                             Q(t)        No Change 

Kb = 1                                                                                                             0  1                              0           Reset 

  Jc = B                1  0                             1            Set 

  Kc = 1                     1 1                           Q(t)          Toggle      
 

PRESENT CALCULATE NEXT 

STATE FLIP-FLOP STATE 

Q(t) INPUTS Q(t+1) 

A B C   Ja Ka Jb Kb Jc Kc A B C   

1 1 1   1 1 1 1 0 1 0 0 0   

0 1 1   1 1 1 1 0 1 1 0 0   
 

STEP #11 Re-draw state diagram to show unused states 

 
 
 
 
 
 
 
 
 
 

STEP #12 Chip Circuit Diagram (only when asked for in EGR/CS332) 

STEP #13 Review assumptions  None made (other than we don’t want to force the unused state anywhere for the given problem – however, in reality you probably want to force your machine to 

reset if an unused state occurs – i.e., force it back to the initial state because the unused state is most likely an error) 
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Typical
Machine-Instruction Cycle

Dr. Joseph Wunderlich

Phase 1: “FETCH”
 CPU puts address of the “next” machine 

instruction onto the Address bus
 CPU sends “READ” signal to memory 

(cache’s first, then main memory)
 Instruction read into CPU via data bus from 

first memory where it is found (i.e., L1 
cache, or L2 cache, or main memory)

 If it is not located in any of them, this is a 
“Page Fault” and a new page must be put 
into main memory from disk storage



Phase 2: “DECODE”
 CPU decodes instruction put into it’s 

Instruction Register during the “FETCH

 Machine Instructions have two main parts:
1. OP-Code: Identifies which instruction to 

execute
2. Operand: Data to be used during execution

Phase 2: “DECODE” continued
 Typical Instruction Format:

8 to 32 bits
OP-code Operand or location of operand

5 to 11 bits in OP-Code
Therefore 2^5=32 to 2^11=2048 different 
machine instructions in “Instruction Set”
•Some simple Microcontrollers (e.g., PIC’s) have only 32 
instructions
•Some large-scale machines (e.g., IBM S/390) have close 
to 2000 instructions

Control Bits



Phase 2: “DECODE” continued
 Location of operand:

1. “IMMEDIATE:” Data encoded into machine 
instruction (Fastest to execute)

2. “MEMORY-REFERENCED:” Data located in 
memory at a location defined by address encoded 
into machine instruction (Slowest to execute)

3. “REGISTER-REFERENCED:” Data is located in an 
internal CPU register and it’s register number is 
encoded into machine instruction  

Phase 3: “EXECUTE”
 If necessary, read operand data from cache’s or 

main memory:
1. CPU puts address of operand onto address bus
2. CPU exerts a “READ” signal
3. Data read into CPU via data bus from first memory where 

it is found (i.e., L1 cache, or L2 cache, or main memory)
4. If it is not located in any of them, this is a “Page Fault” 

and a new page must be put into main memory from disk 
storage

 Many different types of data manipulations are 
carried out depending on the type of instruction 
(e.g., ADD, SUBTACT, MULTIPLY, MOVE, JUMP, 
etc.)



Phase 4: “WRITE-BACK”
 This phase is only necessary for 

memory referenced instructions which 
write results back to memory:
1. CPU puts address onto address bus of where 

data is to be written to
2. CPU puts Data onto data bus
3. CPU exerts a “WRITE” signal
4. Data written into memory
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"Minimal Computer-Architecture" 
 by J Wunderlich PhD 

 
Note: This is the one thing that you need to know for both EGR/CS230 and EGR/CS332 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Program Counter addresses machine instructions to be fetched from memory 
 
Instruction Register receives fetched machine instruction 
  
Control Logic creates all routing signals after decoding the fetched machine instruction 
 
Arithmetic Logic Unit (ALU) performs arithmetic and logical manipulation of data and addresses 
 
Registers (i.e., general purpose registers) to sometimes store intermediate results of calculations 
 
Status Register holds status flags and condition codes (Parity, Comparison Bit, and sometimes control bits for machine 
configuring) 
 
“Memory” (i.e. “main memory”) stores data and instructions, and sometimes intermediate results of calculations 
  
 Stack stores addresses (or processor status) for returning from program-calls (or interrupts) 
 
 Input/Output (“I/O”) “Channels” often addressed as memory (i.e., memory-mapped I/O) 
 
 
NOTE 1: What is actually in a CPU vs on a Motherboard varies by Microprocessor and Microcontroller system 
NOTE 2: Cache Memories, Bus Controller, and an assortment of other functional parts are not shown on this simplest of 
diagrams 
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