
BOOLEAN IDENTITIES
To be referenced by number in EGR/CS332, 333, and 433

 (18)

X’ is the inverse of X and will be referenced as X in
EGR/CS332,333, and 433. Please use this notation.
(The X’ notation is just easier for typing)

JT Wunderlich PhD

Z
DeMorgan’s Law

DeMorgan’s Law

Two ways to designate
 “AND” Operation

XYXYX +=⊕

“OR” Operation

•

+

⊕

“XOR” (i.e., Exclusive Or) Operation

Two's Complement
By Thomas Finley, April 2000 http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html#fromtwo

Two's complement is the way computer represents integers.
Conversion to Two's Complement
Suppose we're working with 8 bit quantities and find how -28 is expressed in two's complement.

 First write 28 in binary.
00011100
Then invert digits.
11100011
Then add 1.
11100100

Conversion from Two's Complement (DO SAME THING !)
Use number 0xFFFFFFFF (i.e., in HEX)

In binary:
1111 1111 1111 1111 1111 1111 1111 1111

It's leftmost bit is 1, which means it represents a number that is negative.
A leading 1 means number is negative, a leading 0 means positive.

Invert digits:
0000 0000 0000 0000 0000 0000 0000 0000
Then add 1.
0000 0000 0000 0000 0000 0000 0000 0001

So 0xFFFFFFFF in 2’s compliment is -1

Arithmetic with Two's Complement
One of the nice properties of two's complement is that addition and subtraction is made very
simple. With a system like two's complement, the circuitry for addition and subtraction can
be unified, whereas otherwise they would have to be treated as separate operations.

Example 1: Add 69 and 12. If we use decimal, the sum is 81. But let's use binary.

 0000 0000 0000 0000 0000 0000 0100 0101 (69)
+ 0000 0000 0000 0000 0000 0000 0000 1100 (12)

 0000 0000 0000 0000 0000 0000 0101 0001 (81)
Example 2: Subtract 12 from 69. Now, 69 - 12 = 69 + (-12).
To get the negative of 12 we take its binary representation, invert, and add one.
0000 0000 0000 0000 0000 0000 0000 1100
Invert the digits.
1111 1111 1111 1111 1111 1111 1111 0011
And add one.
1111 1111 1111 1111 1111 1111 1111 0100
The last is the binary representation for -12. As before, we'll add the two numbers together.

 .
 0000 0000 0000 0000 0000 0000 0100 0101 (69)
+ 1111 1111 1111 1111 1111 1111 1111 0100 (-12)

 0000 0000 0000 0000 0000 0000 0011 1001 (57)

http://www.cs.cornell.edu/%7Etomf/notes/cps104/twoscomp.html#fromtwo

We result in 57, which is 69-12. Note that the leftmost sum will have a carry out which is
ignored here.
Example 3: Lastly, subtract 69 from 12.
12 - 69 = 12 + (- 69).
 The two's complement representation of 69 is the following
1111 1111 1111 1111 1111 1111 1011 1011
So we add this to 12.

 .
 0000 0000 0000 0000 0000 0000 0000 1100 (12)
+ 1111 1111 1111 1111 1111 1111 1011 1011 (-69)

 1111 1111 1111 1111 1111 1111 1100 0111 (-57)
This results in 12 - 69 = -57, which is correct.

CS/EGR 332
COMBINATIONAL DIGITAL CIRCUIT DESIGN EXAMPLE

JT Wunderlich PhD

The system below is designed using J Wunderlich’s eight steps for digital combinational logic circuit
design to detect the number of bubbles in a chocolate bar, and open a trap door on a conveyer belt when
the number of bubbles EXCEEDS the number on a selector switch.

1. Define Problem

• F = 1 IF x > y were x and y can be 0, 1, 2, or 3.
• F = 1 if “FAILS TEST” → Trap door opens
• Assume x can’t be > 3, and address this assumption later

2. Encode Input and Output Variables into Binary from Analog values

Our problem has 4 analog values per variable (i.e., 0.1.2.3), so:
2n = 4
 n = 2 Binary Bits needed per
 Analog
 variable

x x1 x0
0 0 0
1 0 1
2 1 0
3 1 1

y y1 y0
0 0 0
1 0 1
2 1 0
3 1 1

Analog value of F is 1, so no need
to encode it into Binary:

This notation
means two wires

Image
Processing

3. Create Truth-Table

(22) x (22) = (22+2) = 24 = 16 Cases, so table needs 16 rows

For x For y 4 Input variables
 X Y

case
m

x1 x0 y1 y0
F

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 0

 Output F = 1 if input x > input y

4. Find a Simplified Boolean Function
• Using Simplification Maps to find Minimal Sum of Products (SOP)

o i.e., an OR is a logical sum, and an AND is a logical product
• We will spend a couple weeks learning how to derive and use all 1,2,3,4, and 5 variable versions of

these maps

 Minimal SOP = F = 00111010 yxxyxyyx ++

Important to start with
the number 0 to
represent the case
0000 when all binary
input bits are zero

Proof of Simplification Map Using Boolean Algebra
(THIS IS NOT A REQUIRED STEP OF THE DESIGN PROCESS)

F = m4 + m8 + m9 + (m12 + m12 + m12) + m13 + m14

()124 mm +

()01010101 yyxxyyxx +

()()01011 yyxxx +

()()0101 yyx

()010 yyx

()1412 mm +

()01010101 yyxxyyxx +

()()00111 yxxyy +

()()0011 yxx

()001 yxx

131298 mmmm +++

0101010101010101 yyxxyyxxyyxxyyxx +++

()()10100 yxxyy + + ()()10100 yxxyy +

()()1011 yxx + ()()1011 yxx

()101 yxx + ()101 yxx

()()1100 yxxx +

()()111 yx

()11yx

5. Logic Circuit Diagram (using “Rail Logic”)

These vertical lines are called “Rails”
and are an industry standard

6. Possibly Convert to all NAND gates (ONLY IF ASKED FOR)
 (This is common for VLSI implementations because
 NAND gates require less area on a silicon chip)

7. Chip Circuit Diagram (not using NAND’s) for implementing our Logic Circuit

Two different ways to represent a
NAND gate

Just add Circles to represent “NOT’s
and make sure you add one to both
ends of each wire so they cancel each
other, and therefore don’t change the
functioning of the circuit

NOTE: If one input to the OR gate does
not connect to an AND gate (i.e., is
coming directly from a Rail), insert an
INVERTOR gate made from a two-
input NAND gate with both inputs tied
together

5 VOLTS

0 VOLTS

8. Check Assumptions made in first step

Examine our assumption that x can’t be greater than 3 bubbles.
 If we let x be as big as 255, x would need 8 bits to encode it into binary, and our truth table
 would look like this:

X7 x6 X5 x4 x3 x2 x1 x0 y1 y0 F

210 = 1024 Rows !!!

HOWEVER, an AD HOC SOLUTION to this problem is:

i.e., If any higher ordered bit to the left of the two bits used by our circuit is a 1,
the OR gate will produce a 1,

And this will occur if the image processing system detects more than 3 (i.e.,
Binary 11) bubbles

Image
Processing

EXAMPLE #1
Design a BCD (Binary Coded Decimal) counter using T flip-flops, and the simplest circuitry possible (i.e., this means don’t have an input, and connect a

push-button switch to the Flip-Flops). Also, this counter resets to zero after nine. Don’t force the unused states to go anywhere. And as usual, don’t try
to “minimize the machine,” convert to NAND’s, or create a Chip Circuit Diagram (i.e., only do these things when specifically asked for).

STEP #1 Define The Problem (with a Block Diagram)

Let’s not have an input to trigger each count, but instead let’s act as the clock by substituting

 a push-button switch tied to the positive terminal of our power supply (which is equivalent to a Logic-1)

STEP #2 Draw State Diagram.

 No need to label transition-arrows since there are no inputs

 (Thanks to our acting as the clock)

Also, we can use state variables for outputs

STEP #3 Encode Variables  Already Binary. And we need four State Variables here (A,B,C,D) for the four bits used for BCD

STEP #4 Minimize Machine  (not done in EGR/CS332)

STEP #5 Make State Table

 There are no output columns since we are using the state variables for outputs

 STEP #6 Append flip-flop inputs using excitation tables

 (using EXCITATION TABLE for T Flip-Flop for this problem):

 Present State Next State T Flip-Flop Input

 Q(t) Q(t+1) to achieve Q(t+1)

 0 0 0 No Change

 0 1 1 Toggle
 1 0 1 Toggle

 1 1 0 No Change

 STATE TABLE
PRESENT NEXT

 STATE STATE FLIP-FLOP

Q(t) Q(t+1) INPUTS

A B C D A B C D Ta Tb Tc Td m

0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 1 1 1

0 0 1 0 0 0 1 1 0 0 0 1 2

0 0 1 1 0 1 0 0 0 1 1 1 3

0 1 0 0 0 1 0 1 0 0 0 1 4

0 1 0 1 0 1 1 0 0 0 1 1 5

0 1 1 0 0 1 1 1 0 0 0 1 6

0 1 1 1 1 0 0 0 1 1 1 1 7

1 0 0 0 1 0 0 1 0 0 0 1 8

1 0 0 1 0 0 0 0 1 0 0 1 9

1 0 1 0 ? ? ? ? X X X X 10

1 0 1 1 ? ? ? ? X X X X 11

1 1 0 0 ? ? ? ? X X X X 12

1 1 0 1 ? ? ? ? X X X X 13

1 1 1 0 ? ? ? ? X X X X 14

1 1 1 1 ? ? ? ? X X X X 15

0000

0001

0010

0011

0100 0101

0110

0111

1000

1001

DESIGN of Counters (Digital Synchronous Sequential Circuits) by J. Wunderlich PhD LAST REVISION: 11/02/17

 Logic-1

STEP #7 Simplify flip-flop inputs using maps

 1

x x x x

 1 x x

STEP #8 Draw Logic circuit

 1

 1

x x x x

 x x

 1 1

 1 1

x x x x

 x x

1 1 1 1

1 1 1 1

x x x x

1 1 x x

A

B

C

D

Ta

A

B

C

D

Tb

A

B

C

D

Tc

A

B

C

D

Td

= AD + BCD

+

= CD

 = 1 = AD

A

B

C

D

B

C

A

D

Logic-1

Tb

Tc

Td

5 volt DC
Power Supply

Ta

AA BB CC DD

O
U
T
P
U
T

FEEDBACK

Push-button

Logic-0

-

Common Ground

STEP #9 Convert to NANDS  Not asked for

STEP #10 Analyze unused states using flip-flop characteristic table After you fill in the part of the table evaluating all Flip-Flop Inputs,

 and remembering your Flip Flo input functions: use the T Flip-Flop CHARACTERISTIC TABLE to look at each State Variable:

Ta = AD + BCD Flip-Flop Input What happens to State Variable at next clock edge

Tb = CD T Q(t+1)

Tc = AD 0 Q(t) No Change

Td = 1 1 Q(t) Toggle

PRESENT CALCULATE NEXT

STATE FLIP-FLOP STATE

Q(t) INPUTS Q(t+1)

A B C D Ta Tb Tc Td A B C D

1 0 1 0 0 0 0 1 1 0 1 1

1 0 1 1 1 1 0 1 0 1 1 0

1 1 0 0 0 0 0 1 1 1 0 1

1 1 0 1 1 0 0 1 0 1 0 0

1 1 1 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 0 1 0 0 1 0

STEP #11 Re-draw state diagram to show unused states

STEP #12 Chip Circuit Diagram (only when asked for in EGR/CS332)

STEP #13 Review assumptions  None made (other than we don’t want to force the unused state anywhere for the given problem – however, in reality you probably want to force your machine to

reset if an unused state occurs – i.e., force it back to the initial state because the unused state is most likely an error)

0000

0001

0010

0011

0100 0101

0110

0111

1000

1001

1100 1101
1010 1011

1111 1110

EXAMPLE #2
 Given the following State Diagram, state in words what it is doing, then draw the block diagram, then continue all
the design steps. Use JK flip-flops, and use the simplest circuitry possible (i.e., this means don’t have an input, and connect a

push-button switch to the Flip-Flops). And as usual, don’t try to “minimize the machine,” convert to NAND’s, or create a Chip
Circuit Diagram (i.e., only do these things when specifically asked for).

In words, what this is doing: This is a counter that counts from 000 to 001 to 010 to 100 to 101 to 110, then resets to 000

STEP #1 Define The Problem (with a Block Diagram)

Let’s not have an input to trigger each count, but instead let’s act as the clock by substituting

a push-button switch tied to the positive terminal of our power supply (which is equivalent to a Logic-1)

STEP #2 Draw State Diagram. GIVEN

STEP #3 Encode Variables  already Binary. And we need three State Variables (A,B,C) for the three bits used in the given count

STEP #4 Minimize Machine  (not done in this course)

STEP #5 Make State Table

 There are no output columns since we are using the state variables for outputs

 STEP #6 Append flip-flop inputs using excitation tables

 (using EXCITATION TABLE for JK Flip-Flop for this problem):

 Present State Next State JK Flip-Flop Inputs

 Q(t) Q(t+1) to achieve Q(t+1)

 0 0 0 X No Change (00) or Reset (01)

 0 1 1 X Set (10) or Toggle (11)

 1 0 X 1 Reset (01) or Toggle (11)
 1 1 X 0 No Change or Set

 STATE TABLE
PRESENT NEXT

STATE STATE FLIP-FLOP

Q(t) Q(t+1) INPUTS

A B C A B C Ja Ka Jb Kb Jc Kc m

 0 0 0 0 0 1 0 X 0 X 1 X 0

0 0 1 0 1 0 0 X 1 X X 1 1

0 1 0 1 0 0 1 X X 1 0 X 2

0 1 1 ? ? ? X X X X X X 3

1 0 0 1 0 1 X 0 0 X 1 X 4

1 0 1 1 1 0 X 0 1 X X 1 5

1 1 0 0 0 0 X 1 X 1 0 X 6

1 1 1 ? ? ? X X X X X X 7

000

110

101

100

010

001

 Logic-1

Don’t move the unused states from
the row corresponding to the
midterm that represents it; this is to
preserve the integrity of the
Simplification Maps and the order
of all the cells within them

STEP #7 Simplify flip-flop inputs using maps

 x 1

x x x x

x x x x

 x 1

 1 x x

 1 x x

x x x 1

x x 1 x

1 x x

1 x x

x 1 x x

x 1 x x

A

B

C

Ja = B

A

B

C

Ka = B

A

B

C

Jb = C

A

B

C

Kb = 1

A

B

C

Jc =B

A

B

C

Kc =1

+

A

B

C

B

C

A

Logic-1

Jb

Jc
Kc

5 volt DC
Power Supply

Ja

AA BB CC

O
U
T
P
U
T

Push-button

Logic-0

-

Common Ground

Kb

Ka

STEP #9 Convert to NANDS  not asked for

STEP #10 Analyze unused states using flip-flop characteristic table After you fill in the part of the table evaluating all Flip-Flop Inputs

 and remembering your Flip Flop input functions: use the JK Flip-Flop CHARACTERISTIC TABLE to look at each State Variable:

Ja = B Flip-Flop Inputs What happens to State Variable at next clock edge

Ka = B J K Q(t+1)

Jb = C 0 0 Q(t) No Change

Kb = 1 0 1 0 Reset

 Jc = B 1 0 1 Set

 Kc = 1 1 1 Q(t) Toggle

PRESENT CALCULATE NEXT

STATE FLIP-FLOP STATE

Q(t) INPUTS Q(t+1)

A B C Ja Ka Jb Kb Jc Kc A B C

1 1 1 1 1 1 1 0 1 0 0 0

0 1 1 1 1 1 1 0 1 1 0 0

STEP #11 Re-draw state diagram to show unused states

STEP #12 Chip Circuit Diagram (only when asked for in EGR/CS332)

STEP #13 Review assumptions  None made (other than we don’t want to force the unused state anywhere for the given problem – however, in reality you probably want to force your machine to

reset if an unused state occurs – i.e., force it back to the initial state because the unused state is most likely an error)

111

011

000

110

101

100

010

001

Typical
Machine-Instruction Cycle

Dr. Joseph Wunderlich

Phase 1: “FETCH”
 CPU puts address of the “next” machine

instruction onto the Address bus
 CPU sends “READ” signal to memory

(cache’s first, then main memory)
 Instruction read into CPU via data bus from

first memory where it is found (i.e., L1
cache, or L2 cache, or main memory)

 If it is not located in any of them, this is a
“Page Fault” and a new page must be put
into main memory from disk storage

Phase 2: “DECODE”
 CPU decodes instruction put into it’s

Instruction Register during the “FETCH

 Machine Instructions have two main parts:
1. OP-Code: Identifies which instruction to

execute
2. Operand: Data to be used during execution

Phase 2: “DECODE” continued
 Typical Instruction Format:

8 to 32 bits
OP-code Operand or location of operand

5 to 11 bits in OP-Code
Therefore 2^5=32 to 2^11=2048 different
machine instructions in “Instruction Set”
•Some simple Microcontrollers (e.g., PIC’s) have only 32
instructions
•Some large-scale machines (e.g., IBM S/390) have close
to 2000 instructions

Control Bits

Phase 2: “DECODE” continued
 Location of operand:

1. “IMMEDIATE:” Data encoded into machine
instruction (Fastest to execute)

2. “MEMORY-REFERENCED:” Data located in
memory at a location defined by address encoded
into machine instruction (Slowest to execute)

3. “REGISTER-REFERENCED:” Data is located in an
internal CPU register and it’s register number is
encoded into machine instruction

Phase 3: “EXECUTE”
 If necessary, read operand data from cache’s or

main memory:
1. CPU puts address of operand onto address bus
2. CPU exerts a “READ” signal
3. Data read into CPU via data bus from first memory where

it is found (i.e., L1 cache, or L2 cache, or main memory)
4. If it is not located in any of them, this is a “Page Fault”

and a new page must be put into main memory from disk
storage

 Many different types of data manipulations are
carried out depending on the type of instruction
(e.g., ADD, SUBTACT, MULTIPLY, MOVE, JUMP,
etc.)

Phase 4: “WRITE-BACK”
 This phase is only necessary for

memory referenced instructions which
write results back to memory:
1. CPU puts address onto address bus of where

data is to be written to
2. CPU puts Data onto data bus
3. CPU exerts a “WRITE” signal
4. Data written into memory

V

"Minimal Computer-Architecture"
 by J Wunderlich PhD

Note: This is the one thing that you need to know for both EGR/CS230 and EGR/CS332

Program Counter addresses machine instructions to be fetched from memory

Instruction Register receives fetched machine instruction

Control Logic creates all routing signals after decoding the fetched machine instruction

Arithmetic Logic Unit (ALU) performs arithmetic and logical manipulation of data and addresses

Registers (i.e., general purpose registers) to sometimes store intermediate results of calculations

Status Register holds status flags and condition codes (Parity, Comparison Bit, and sometimes control bits for machine
configuring)

“Memory” (i.e. “main memory”) stores data and instructions, and sometimes intermediate results of calculations

 Stack stores addresses (or processor status) for returning from program-calls (or interrupts)

 Input/Output (“I/O”) “Channels” often addressed as memory (i.e., memory-mapped I/O)

NOTE 1: What is actually in a CPU vs on a Motherboard varies by Microprocessor and Microcontroller system
NOTE 2: Cache Memories, Bus Controller, and an assortment of other functional parts are not shown on this simplest of
diagrams

Register
Bank Arithmetic

Logic Unit

 Program Counter

DATA BUS

ADDRESS BUS

Input
and

Output
Memory

Instruction
Register

Control
Logic

data

data
address

instruction
address

Status Register

Stack

increment

Registers

	Two's Complement
	Conversion to Two's Complement
	Conversion from Two's Complement (DO SAME THING !)
	Arithmetic with Two's Complement
	Example 1: Add 69 and 12. If we use decimal, the sum is 81. But let's use binary.
	Example 2: Subtract 12 from 69. Now, 69 - 12 = 69 + (-12).
	To get the negative of 12 we take its binary representation, invert, and add one.
	Example 3: Lastly, subtract 69 from 12.
	12 - 69 = 12 + (- 69).
	The two's complement representation of 69 is the following

	Output F = 1 if input x > input y

	V
	"Minimal Computer-Architecture"

