
Vector Array / Neuron Processor Design
and other design projects

Feild Programmable Gate Arrays Industrial Logic Controllers Physical Circuits

Clay Buxton ‘20
Computer Engineering

Kevin Carman ‘20
Computer Engineering

Derek Manning ‘19
Computer Engineering

EGR 433: Advanced Computer Engineering

Advisor J T Wunderlich PhD

Instructions

Vector + Neuron Instructions

Project Goals
Use Logisim to create a quad core vector array and 
neuron processor with an embdedded code stack. 
The processor controlled by a program counter with 
a master control unit and a finite state machines 
that implements the simple pipeline of fetch, 
decode, execute, and write-back plus any special 
states. 

Our machine needed to be able to process a set of 
basic instructions in addition to vector mathematics 
and a neuron transfer function. The computer has 6 
registers that act as memory for the machine. Using 
the inputs Ri and Rj, in addition to 2 counters, the 
machine can do basic mathematics and logic. This 
machine also has the ability to do math with vectors 
using the vector registers Vi and Vj.

Our machine has 26 unique instructions that can 
be programmed into an embedded code stack to 
allow for autonomous execution using a finite state 
machine. Once the machine has been programmed 
through the stack, the machine can be set to run 
and autonomously run through the program as 
expected from any other computer.

Outer Interface for Circuit
Vector Math and Neuron Transfer

Core(x4)
Computational Unit

C
ontrol Logic

R
egister Bank

Code Stack and Cores

O
verflow

 C
ontrol

Vector Math and Accumlator

Advanced AXC PLCNano Line PLC

Digilent ATLYS FPGA

Circuit Trainer

The machine have 4 of these cores which process 
a code stack. Each have the ability to run all of the 
26 uniqure functions, and has 6 registers to store 
information needed for later instructions.

ATX Power Supply

Using ATLYS FPGA’s, we were able to implement simplistic variants of the 
cores. Ultizing the ISE Suite, we designed the ciruicts required for these cores 
and physically interacted with them using the ATLYS FPGA’s. This allowed us 
to have hands on interaction with our circuit.

Using both the Advanced AXC PLCs, with 
PC Worx, and the Nano Line PLCs, with 
Nano Navigator Suite, we created circuits 
that interfaced with the real world.

Shown to the left is a circuit that uses an 
ATX power SUPPLY and A Nano PLC to 
turn on A lightbulb in differed ways. Using 
the Advanced AXC PLCs, we did labs we 
did labs using circuitry similar to logisim 
and ISE and ladder logic. Our ealier labs had us implementing 

simple parts of the cores in a physical 
model. These circuits had counters 
and could do basic math. In a later 
lab, we used an ATX power supply to 
power portions of the NanoPLC. We 
found out the hard way that these ATX 
power supplies have to have a dummy 
load to work correclty. That circuit is 
shown to the left.

00h
01h
02h
03h
08h
09h
0Ah
0Bh
10h
11h
12h
13h
20h
21h
22h
23h
24h
25h
26h
27h
30h
40h

Ri + Counter #1 -> Rk
Ri + Counter #2 ->Rk
Ri + Rj -> Rk
Counter #1 + Counter#2 -> Rk
Ri x Counter #1 -> Rk, Overflow-> Rk+1
Ri x Counter #2 -> Rk, Overflow -> Rk+1
Ri x Rk -> Rk, Overflow -> Rk+1
Counter #1 x Counter #2 -> Rk, Ovr Rk+1
Compare Ri with Counter #1 -> Rk +LED
Compare Ri with Counter #2 -> Rk + LED
Compare Ri with Rj -> Rk + LED
Compare Counter #1 with #2 -> Rk + LED
Ri AND Counter #1 -> Rk
Ri AND Counter #2 -> Rk
Ri AND Rj -> Rk
Counter #1 AND Counter #2 -> Rk
Ri OR Counter #1 -> Rk
Ri OR Counter #2 -> Rk
Ri OR Rj -> Rk
Counter#1 OR Counter#2 -> Counter #2
Clear Ri
MAC 

Overflow -> Rk+4, Wrap R0+
Ri x Rj -> Rk, Overflow Rk+1, Wrap R0+
(Rk+3) + Rk -> Rk

Accumulator -> Rk+3, Wrap R0+

(Rk +4) + (Rk+1) + Carry -> Rk+1

20h
21h
22h

23h

Vi + Vj -> Vk
Vi + Vj -> Vk, Overflow Vk+1 (Wrap R0)
Vi • Vj -> Vk, Overflow Vk+1 (Wrap R0)

Vi x Vj -> Vk, Overflow -> Vk+1 (Wrap R0)
Vk(1)+Vk(2)+Vk(3)+Vk(4) -> 32 Bit Accumulator

Vk(1)+Vk(2)+Vk(3)+Vk(4) -> 32 Bit Accumulator
32 Bit Accumulator -> Neuron Transfer Function


