Vector/Array/Neuron Processor Design Plus Semester Highlights

Conor Csongradi '20, Lacie Flores '20, Ryan Schick '18

EGR 433: Advanced Computer Engineering
Elizabethtown College, Elizabethtown, PA

Processor Design Requirements:

Create 4 parallel scalar functional units with Vector Registers Vi, Vj, and Vk created from Ri's, Rj's and Rk's of the 4 units. Use a 32-bit adder to add the two 16-bit product results from each unit. Put result into a 32 bit scalar accumulator, then into a neuron transfer function. Create an embedded code stack, controlled by a program counter via a master control unit with a Finite State Machine that implements the simple pipeline of Fetch, Decode, Execute, Write-Back, plus any special states. Embed a carefully crafted assembly language code segment to demonstrate the functionality of your instruction set.

Super Scalar

 Design Highlight: Two parallel pipelines in a 2-way super scalar architecture.Uses a finite state machine that alternates between pipes.
Advanced PLC Highlight:

- Created Complex Voting Machine
- Two Different Methods
- Ladder Logic and Gates
- Used in Industry, Aging Standard
- Structured Text
- High Level Programming Language
- Global Variables Tied to I/O of Machine
- LED's Triggered Based on Voting Criteria of Four Different Groups
Output LED's Also Triggered Based on Output Arithmetic
- Versatility of \$5,000 Advanced PLC Controller

NanoLC Highlight:

- Implemented 2-Bit Up and Down Counters

Cycles Through all Possible Steps/Iterations

- Stores Counter Output in Registers
- Comparator Designed Around Register Arithmetic
- Counter and Comparator Values Displayed via LED's
- Programmed via Flowchart Logic

FPGA/Xilinx Highlight:

- Created Digital Circuit Controlled By Four Bit Instruction Set
- Capable of 8-Bit Arithmetic
- Stores Results in Registers
- Outputs to Hex Display
- All 8-Bit Functional Blocks Created From Scratch

Breadboarding/Power Supply Highlight:

- Modified an Old PSU to Serve as Power Supply for Breadboard Test Bench
- Stripped and Organized Wires According to ATX Layout
- Interfaced Testing Bench with NanoLC

