
Lab 3: Computer Instruction-Set Design continued, including
FPGA; Plus PLC Power-Control

Lab 5 Computer Instruction-Set Design continued with 2-way superscalar pipelines, including FPGA;
Plus Advanced $5000 Phoenix Contact PLC’s

1. Using a NanoLC PLC Base Unit, I/O unit, and Relay, turn on a 120 volt light bulb
five seconds after an external input pushbutton is pressed.

2. Design and implement the circuit below in two ways:
• A Logisim circuit simulation using only FLIP-FLOP’s, INVERTORS, AND’s, OR’s,
and NAND’s for all circuits
• Field Programmable Gate Array (FPGA) using the largest functional blocks possible
(I,e, avoid using only FLIP-FLOP’s, INVERTORS, AND’s, OR’s, and NAND’s)

1. Using an Advanced AXC/AXL PLC, perform the lab experiment shown in our custom Lab Manual and include in report info you
recommend be added to this manual

2. Duplicate everything done below in the last lab. You will be creating two parallel pipelines in a 2-way Superscalar architecture. Create a
STACK of all 13 instructions of your instruction set, and create a FINITE STATE MACHINE that alternates FETCHING sequential
instructions from your stack, alternating which pipe receives the instruction. Let hardware DECODE and EXECUTE as in last lab.
NOTE: This architecture is pipelined and not yet fully superscalar since FETCHES are not yet done simultaneously.

Lab3 Opcode:
Instruction Set:
(OP-CODE=1): Compare operand to up-counter count
(OP-CODE=0): Compare operand to down-counter count

Instruction Set
DON’T CHANGE THE OP-CODES !

AND TURN OFF OPERATIONS THAT ARE NOT TO BE DISPLAYED (i.e., demonstrate energy savings)

(OP-CODE = 0000) Add Immediate Data to counter #1 (UP-COUNTER)
(OP-CODE = 0001) Add Immediate Data to counter #2 (DOWN-COUNTER)
(OP-CODE = 0010) Compare Immediate Data with counter #1 (UP-COUNTER)
(OP-CODE = 0011) Compare Immediate Data with counter #2 (DOWN-COUNTER)
(OP-CODE = 0100) AND Immediate Data to counter #1 (UP-COUNTER)
(OP-CODE = 0101) AND Immediate Data to counter #2 (DOWN-COUNTER)
(OP-CODE = 0110) OR Immediate Data to counter #1 (UP-COUNTER)
(OP-CODE = 0111) OR Immediate Data to counter #2 (DOWN-COUNTER)
(OP-CODE = 1000) Add Counters
(OP-CODE = 1001) Compare Counters
(OP-CODE = 1010) AND Counters
(OP-CODE = 1011) OR Counters
(OP-CODE = 11XX) Turn off everything but display of Op-code and Operand

Lab 6/7/8: Vector-Array / Neuron
Processor Design

1. Create four parallel scalar functional units
with vector registers Vi, Vj, Vk created from
Ri, Rj, Rk of the units.

2. Add a 32-bit adder to add the two 16-bit
product results from each unit after a vector
multiply, as part of a matrix row x column
instruction

3. Put results into a 32 bit scalar accumulator,
then into a neuron transfer function.

4. Create an embedded code stack, controlled
by a program counter via a master control
unit with a final state machine that
implements the simple pipeline of fetch,
decode, execute, and write-back; plus any
special states.

5. Then embed a carefully crafted assembly
language code segment to demonstrate the
functionality of your instruction set and
circuitry in the minimal amount of time that
you can defend as providing comprehensive
testing of all scalar, vector, matrix, and
neuron machine instructions and hardware.

MACHINE INSTRUCTION SET

SCALAR ARITHMETIC ADDITION
00h (OP-CODE = 00000000) Ri + counter#1 →Rk
01h (OP-CODE = 00000001) Ri + counter#2 →Rk

02h (OP-CODE = 00000010) Ri + Rj →Rk
03h (OP-CODE = 00000011) counter#1 + counter#2 →Rk

SCALAR ARITHMETIC SUBTRACTION
04h to 07h (OP-CODE = 000001XX) Reserved for subtraction instructions

SCALAR ARITHMETIC MULTIPLICATION
08h (OP-CODE = 00001000) Ri x counter#1 →Rk, overflow →Rk+1 (wrap to R0)
09h (OP-CODE = 00001001) Ri x counter#2 →Rk, overflow →Rk+1 (wrap to R0)

0Ah (OP-CODE = 00001010) Ri x Rj →Rk, overflow →Rk+1 (wrap to R0)
0Bh (OP-CODE = 00001011) counter#1 x counter#2 →Rk, overflow→Rk+1(wrap to R0)

SCALAR ARITHMETIC DIVISION
0Ch to 0Fh (OP-CODE = 000011XX) Reserved for division instructions

SCALAR ARITHMETIC COMPARISON
10h (OP-CODE = 00010000) Compare Ri with counter#1 →Rk
11h (OP-CODE = 00010001) Compare Ri with counter#2 →Rk

12h (OP-CODE = 00010010) Compare Ri with Rj →Rk
13h (OP-CODE = 00010011) Compare Counters

SCALAR LOGICAL AND
20h (OP-CODE = 00100000) Ri AND counter#1 →Rk
21h (OP-CODE = 00100001) Ri AND counter#2 →Rk

22h (OP-CODE = 00100010) Ri AND Rj →Rk
23h (OP-CODE = 00100011) AND counters →Rk

SCALAR LOGICAL OR
24h (OP-CODE = 00100100) Ri OR counter#1 →Rk
25h (OP-CODE = 00100101) Ri OR counter#2 →Rk

26h (OP-CODE = 00100110) Ri OR Rj →Rk
27h (OP-CODE = 00100111) OR counters →Rk

CLEAR
30h (OP-CODE = 00110000) Clear Ri

MAC
(Multiply, Accumulate). Accumulator = Accumulator + (Ri x Rj) considering overflow also
40h (OP-CODE = 01000000) Step 1: Accumulator →Rk+3 (wrap to R0+)

Step 2: Overflow →Rk+4 (wrap to R0+)
Step 3: Ri x Rj →Rk, overflow →Rk+1 (wrap to R0)

Step 4: (Rk+3)+Rk →Rk
Step 5: (Rk+4)+(Rk+1)+Carry →Rk+1

VECTOR-ARRAY / MATRIX &

NEURON INSTRUCTIONS

 Vi, Vj, and Vk are created from Ri’s, Rj’s, and Rk’s of the four parallel functional units

VECTOR ARITHMETIC ADDITION
82h (OP-CODE = 10000010) Vi + Vj →Vk

VECTOR ARITHMETIC SUBTRACTION
84h to 87h (OP-CODE = 100001XX) Reserved for subtraction instructions

VECTOR ARITHMETIC MULTIPLICATION
0Ah (OP-CODE = 10001010) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

VECTOR ARITHMETIC DIVISION
8Ch to 8Fh (OP-CODE = 100011XX) Reserved for division instructions

MATRIX ROW x COLUMN (i.e., Dot-Product)
C0h (OP-CODE = 11000000) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

Vk(1)+Vk(2)+Vk(3)+Vk(4) v 32-Bit Scalar Accumulator

NEURON TRANSFER FUNCTION
E0h (OP-CODE = 11100000) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

Vk(1)+Vk(2)+Vk(3)+Vk(4) → 32-Bit Scalar Accumulator
32-Bit Scalar Accumulator → Neuron Transfer Function

Lab 2: Beginning Computer Instruction-Set Design,
and PLC Equivalent Processing
1. A Logisim circuit simulation using only FLIP-FLOP’s,
INVERTORS, AND’s, OR’s, and NAND’s for all circuits
2. TTL SSI chips on circuit trainers using only
FLIP-FLOP’s, INVERTORS, AND’s, OR’s, NAND’s for all
circuits. Also implement all 10 LED’s (extra LED’s are in
stock, and resistors too, if needed)
3. NanoLC Programmable Logic Controllers (PLC’s) with
improvised inputs and outputs (debouncing not required).
You may encode your inputs and outputs and use the
display screen on the base unit; You may also input and
output an encoded serial bit stream if you run out of
parallel ways to input and output everything.

1

5

4

3

2

5

4
4

EGCR433 Summary:Dillon Dotson
(Senior Engineering), Patrick
Durofchalk (Senior Computer
Engineering), Miguel Gonzalez
(Sophomore Computer Engineering)

5

3

3

1

2

5

Main

Master Control

Control Logic

Parallel Scalar

Neuron Transfer Function

Execute Step

4 Register Bank

4 Status Register

