DESIGN REQUIREMENTS

1. Create four parallel scalar functional units with vector registers V_{i}, V_{i}, V_{k} created from R_{i}, R_{i}, R_{k} of the units.
2. Add a 32-bit adder to add the two 16-bit product results from each unit after a vector multiply, as part of a matrix row x column instruction
3. Put results into a 32 bit scalar accumulator, then into a neuron transfer function.
4. Create an embedded code stack, controlled by a program counter via a master control unit with a final state machine that implements the simple pipeline of fetch, decode, execute, and write-back; plus any special states.
5. Then embed a carefully crafted assembly language code segment to demonstrate the functionality of your instruction set and circuitry in the minimal amount of time that you can defend as providing comprehensive testing of all scalar, vector, matrix, and neuron machine instructions and hardware

(8) Main
(3) Master Control

Control Logic
(1) Parallel Scalar
2) Neuron Transer Functio
(3) Execute Step

MACHINE INSTRUCTION SET
SCALAR ARITHMETIC ADDITION

 O4h to 07 h (0 SC-CODEE $=000001$ XX) Reserved for subtraction SCALAR ARITHMETIC MULTIPLICATION

SCALAR ARITHMETIC COMPARISON
10h (OO-CODE $=00010000)$ Compare Ri with
 scalar logical and

SCALAR LOGICAL OR

(1) CLEAR

 VECTOR-ARRAY / MATRIX \& NEURON INSTRUCTIONS
 VECTOR ARITHMETTC ADDITION VECTOR ARITHMETIC SUBTRACTION VECTOR ARITHMETIC MULTIPLICATION VECTOR ARITHMETIC DIVISION
 $=$ RIX ROW \times COLUMN (i.e. Dot-Product

Vector-Array / Neuron Processor Design
Dillon Dotson (Senior Engineering), Patrick Durofchalk (Senior Computer Engineering), Miguel Gonzalez (Sophomore Computer Engineering)

