
Vector-Array / Neuron Processor Design
Dillon Dotson (Senior Engineering), Patrick Durofchalk (Senior Computer Engineering), Miguel Gonzalez (Sophomore Computer Engineering)

DESIGN REQUIREMENTS

1. Create four parallel scalar functional units
with vector registers Vi, Vj, Vk created from Ri, Rj,

Rk of the units.

2. Add a 32-bit adder to add the two 16-bit
product results from each unit after a vector

multiply, as part of a matrix row x column
instruction

3. Put results into a 32 bit scalar accumulator,
then into a neuron transfer function.

4. Create an embedded code stack, controlled
by a program counter via a master control unit
with a final state machine that implements the
simple pipeline of fetch, decode, execute, and

write-back; plus any special states.

5. Then embed a carefully crafted assembly
language code segment to demonstrate the

functionality of your instruction set and circuitry in
the minimal amount of time that you can defend as

providing comprehensive testing of all scalar,
vector, matrix, and neuron machine instructions

and hardware.

MACHINE INSTRUCTION SET
SCALAR ARITHMETIC ADDITION

00h (OP-CODE = 00000000) Ri + counter#1 →Rk
01h (OP-CODE = 00000001) Ri + counter#2 →Rk

02h (OP-CODE = 00000010) Ri + Rj →Rk
03h (OP-CODE = 00000011) counter#1 + counter#2 →Rk

SCALAR ARITHMETIC SUBTRACTION
04h to 07h (OP-CODE = 000001XX) Reserved for subtraction instructions

SCALAR ARITHMETIC MULTIPLICATION
08h (OP-CODE = 00001000) Ri x counter#1 →Rk, overflow →Rk+1 (wrap to R0)
09h (OP-CODE = 00001001) Ri x counter#2 →Rk, overflow →Rk+1 (wrap to R0)

0Ah (OP-CODE = 00001010) Ri x Rj →Rk, overflow →Rk+1 (wrap to R0)
0Bh (OP-CODE = 00001011) counter#1 x counter#2 →Rk, overflow→Rk+1(wrap to R0)

SCALAR ARITHMETIC DIVISION
0Ch to 0Fh (OP-CODE = 000011XX) Reserved for division instructions

SCALAR ARITHMETIC COMPARISON
10h (OP-CODE = 00010000) Compare Ri with counter#1 →Rk
11h (OP-CODE = 00010001) Compare Ri with counter#2 →Rk

12h (OP-CODE = 00010010) Compare Ri with Rj →Rk
13h (OP-CODE = 00010011) Compare Counters

SCALAR LOGICAL AND
20h (OP-CODE = 00100000) Ri AND counter#1 →Rk
21h (OP-CODE = 00100001) Ri AND counter#2 →Rk

22h (OP-CODE = 00100010) Ri AND Rj →Rk
23h (OP-CODE = 00100011) AND counters →Rk

SCALAR LOGICAL OR
24h (OP-CODE = 00100100) Ri OR counter#1 →Rk
25h (OP-CODE = 00100101) Ri OR counter#2 →Rk

26h (OP-CODE = 00100110) Ri OR Rj →Rk
27h (OP-CODE = 00100111) OR counters →Rk

CLEAR
30h (OP-CODE = 00110000) Clear Ri

MAC
(Multiply, Accumulate). Accumulator = Accumulator + (Ri x Rj) considering overflow also
40h (OP-CODE = 01000000) Step 1: Accumulator →Rk+3 (wrap to R0+)

Step 2: Overflow →Rk+4 (wrap to R0+)
Step 3: Ri x Rj →Rk, overflow →Rk+1 (wrap to R0)

Step 4: (Rk+3)+Rk →Rk
Step 5: (Rk+4)+(Rk+1)+Carry →Rk+1

VECTOR-ARRAY / MATRIX &
NEURON INSTRUCTIONS

 Vi, Vj, and Vk are created from Ri’s, Rj’s, and Rk’s of the four parallel functional units

VECTOR ARITHMETIC ADDITION
82h (OP-CODE = 10000010) Vi + Vj →Vk

VECTOR ARITHMETIC SUBTRACTION
84h to 87h (OP-CODE = 100001XX) Reserved for subtraction instructions

VECTOR ARITHMETIC MULTIPLICATION
0Ah (OP-CODE = 10001010) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

VECTOR ARITHMETIC DIVISION
8Ch to 8Fh (OP-CODE = 100011XX) Reserved for division instructions

MATRIX ROW x COLUMN (i.e., Dot-Product)
C0h (OP-CODE = 11000000) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

Vk(1)+Vk(2)+Vk(3)+Vk(4) v 32-Bit Scalar Accumulator

NEURON TRANSFER FUNCTION
E0h (OP-CODE = 11100000) Vi x Vj →Vk, overflow →Vk+1 (wrap to R0)

Vk(1)+Vk(2)+Vk(3)+Vk(4) → 32-Bit Scalar Accumulator
32-Bit Scalar Accumulator → Neuron Transfer Function

5

3

3

1

2

5

Main

Master Control

Control Logic

Parallel Scalar

Neuron Transfer Function

Execute Step

4 Register Bank

4 Status Register

