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Abstract—Multispectral imaging allows for the 

characterization of plant health and photosynthetic activity based 

on reflectance values of plants and their surroundings in specific 

bands of the electromagnetic spectrum. This project is a 

continuation of a previous semester project; this report provides 

an overview of the previous project, as well as plans for further 

means of data collection and processing for enhanced 

characterization of plant life. In addition, this report will provide 

background on the subject of multispectral imaging, and detail 

how multispectral imaging is used for detection of plant health. 

I. INTRODUCTION 

A. Multispectral Imaging 

Multispectral imaging typically captures 3-15 narrow 

spectral bands of electromagnetic radiation, in multiple regions 

of the spectrum including visible light, near infrared (NIR) 

light, and infrared light. Common bands that are captured 

include blue (450-520 nm), green (520-590 nm), red (590-690 

nm), near infrared (750-900 nm), mid infrared (1550-1750 nm), 

far infrared (2080-2350 nm), and thermal infrared (10400-

12500 nm). Different applications make use of different 

combinations of these bands as well as others. For precise and 

accurate measurements, the bands that are captured often cover 

only a few nanometers of wavelength. There are a few ways 

that this can be done. A relatively cheap and easy method of 

acquiring narrow band measurements is to use narrow-band 

filters placed in front of the lenses of a camera. However, this 

can have some drawbacks, as it can lead to leakage of 

undesirable wavelengths. Another method is using sensors 

designed specifically to detect a certain wavelength or narrow 

band of light. Such devices are more expensive and often 

specially developed but are much more accurate and often used 

in large scale applications like space-borne sensor arrays. 

B. Previous Work 

The previous project used a Raspberry Pi 2 Model B V1.1 

and a Raspberry Pi NoIR Camera module to calculate and 

display, in approximately real time, the Normalized Difference 

Vegetation Index (NDVI). The NoIR Camera module, which 

has the IR blocking filter removed connects to the Raspberry Pi 

through the camera interface built into the Pi. A narrow-band 

blue filter was placed over the camera sensor to block red and 

green wavelengths of light from entering the sensor, while 

allowing blue and infra-red wavelengths to pass through. The 

program, a python script, then uses the following equation to 

approximate an NDVI value for each point in the picture: 

                   𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝐵𝑙𝑢𝑒)

(𝑁𝐼𝑅+𝐵𝑙𝑢𝑒)
   (1) 

A colormap is then applied to the resulting grey-scale image to 

allow for easy interpretation. The project was meant to be 

battery powered and portable, which was accomplished to an 

extent, but it was constructed primarily with parts sourced from 

the Robotics and Machine Intelligence Lab, which limited its 

operating time and resulted in a slightly unwieldly final design. 

In addition to the Raspberry Pi and camera module, a 7-inch 

LCD was used to display the images, a battery pack containing 

8 AA batteries was used for power, and a Phoenix Contact DC 

to DC voltage converter was used to provide 5 volts for the 

Raspberry Pi from the 12 volts provided by the batteries. 

C. Project Overview 

For the next iteration, focus will rest upon reducing the 
overall size of the device, while adding accuracy and 
functionality. Significant size and weight savings will be made 
by using a smaller battery pack, likely a type of lithium battery, 
as well as a smaller DC to DC convertor, as these are the two 
largest individual components. Additionally, a custom designed 
and 3D printed enclosure for the entire device will greatly reduce 
the physical size and make the device easier to handle. The main 
focus will be on increasing the accuracy and variety of 
measurements used to evaluate plant health. This will be 
accomplished through use of an additional camera with narrow-
band filter to exclude more undesirable wavelengths of light and 
thus increase accuracy of the measurements. The addition of a 
second camera will allow for the capture of additional bands of 
light to increase the number of measurements being taken. These 
tasks will be accomplished by replacing the Raspberry Pi 2 with 
a Raspberry Pi Compute Module 3, and a corresponding IO 
Board or StereoPi board which allow for two camera 
connections. The purpose of the new device will differ from the 
previous; the previous was a proof of concept, while the new one 
will serve to provide useful data. After the testing phase, and 
once both cameras are functioning, the data processing will be 
offloaded from the Raspberry Pi to either an external computer 
or a cloud computing service, and the new device will eventually 
exclude a built-in display. Eventually the intention is that the 
device will be able to be mounted on a drone to be able to 
provide data on large patches of land like forest canopies or 
agriculture fields. Another form of functionality that may be 
added is auto calibration and correction for ambient light 
intensity by using photoresistors to correct for variances in light 
intensity of the environment. Finally, once all of the planned 
functionality has been achieved and in order to achieve the 
smallest and lightest possible device, a custom PCB will likely 
be designed and manufactured that includes only the necessary 
ports and connections. A final enclosure will also be designed to 
contain and protect the components. 



D. Design Constraints - Problem Definition 

There is no specific customer with any requirements that 

this project must adhere to. The purpose of this project is to 

build on existing work that uses multispectral imaging for 

characterizing plant health while using relatively cheap and 

easy to acquire components while adhering to a small budget. 

This type of device has uses in agriculture and conservation, 

and while similar devices do exist (see Section II Part G), the 

information that they are able to provide, while very useful, is 

not any different than the information that can be had from a 

cheaper, non-proprietary device, such as the one this project 

plans to provide.  

E. Timeline 

The timeline for this project consists of a few milestones at 

various points throughout this semester and the next at which 

certain elements of the project should be completed: 

 Friday Oct. 25, 2019: Component list finalized, and 

components ordered 

 Wednesday Nov. 27, 2019: Components assembled, 

capturing images, and performing basic processing 

 Friday Dec. 6, 2019: Complete first YouTube video 

 Friday Feb. 7, 2020: Image processing offloaded from 

the Pi to an external device 

 Friday Feb 28, 2020: Add functionality to image 

processing 

 Friday March 13, 2020: Perform functionality 

verification and testing 

 Friday March 27, 2020: Design and 3D print enclosure 

for device 

 Thursday April 9, 2020: Complete poster for 

Scholarship Day, and schedule to have it printed 

 Tuesday April 21, 2020: Scholarship Day poster & 

presentation 

 Friday May 1, 2020: Complete final YouTube video 

Most of these dates are simply an estimate, the actual 

implementation of these goals may be completed sooner or later 

than planned depending on the difficulty of implementation or 

any unforeseen problems.  

F. Budget 

The total budget for the project should not exceed $200. 

Some existing equipment will be used, such as a Raspberry Pi 

NoIR Camera Module, while general materials like wires and 

solder will be acquired from the Robotics and Machine 

Intelligence Lab. Any other necessary materials will be 

purchased. A Raspberry Pi Compute Module 3 and a standard 

Raspberry Pi Camera Module can be had for $25 each. A board 

will be needed to interface with the Raspberry Pi Compute 

Module, and either a Raspberry Pi Compute Module 

prototyping board (~$45) or a StereoPi board ($60-90). These 

components will account for the majority of the project’s cost, 

and will total in the range of $100 to $140, which leaves a 

significant amount of extra budget for contingency and will 

allow for flexibility in choosing components or for the 

possibility of the addition of components for added 

functionality as the project progresses. 

G. Impacts 

The impacts of multispectral imaging in the areas of 

agriculture and conservation are discussed elsewhere (Section I 

Part A and Section II Parts A-F). Socially and ethically, this 

project will likely not have any impacts. This project 

specifically on a large scale, will likely have minimal impact, it 

is mostly intended to demonstrate that this type of imagery and 

the data that it provides can be captured accurately and in a 

similar manner to existing devices while using relatively cheap, 

off the shelf hardware for a fraction of the cost of existing 

devices. While there is no specific plan in place at this time, this 

project could theoretically be used by local farmers or in the 

college’s organic garden to provide information about crop 

health. 

II. BACKGROUND 

A. Simple Ratio 

The simple ratio (SR) is the simplest index used for 

classification of plant health and chlorophyll content. The 

simple ratio, as the name says, looks at the ratio of the 

reflectance of light in the near infrared (NIR) band of the 

spectrum and red band of the spectrum. Green vegetation 

exhibits low reflectance of light in the red and blue parts of the 

spectrum, because it is absorbed by chlorophyll when 

performing photosynthesis. The reflectance of plants is also 

high in the NIR region, as infrared light does not carry enough 

energy to allow photosynthesis to take place. The formula for 

SR is as follows:  

                                  𝑆𝑅 =  
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑
                                   (2) 

This formula, when applied to an image, provides a quick way 

to distinguish green vegetation from other objects, like soil, and 

to estimate the relative biomass in the image. Additionally, it 

can be used to help distinguish stressed vegetation from non-

stressed vegetation. SR values close to 1 mean that an object 

has similar reflectance in the NIR and red regions, like soil, 

while green plants have much higher NIR reflectance than red 

reflectance, which will result in a value much greater than 1 [1]. 

B. Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) takes 

advantage of some reflective properties of chlorophyll, which 

are a part of plants that allow them to absorb energy from light 

and perform photosynthesis. Two types of chlorophyll exist, 

chlorophyll A and B. The absorbance characteristics of the two 

types of chlorophyll differ slightly, but they exhibit very similar 

trends. In general, chlorophyll absorbs light in the blue and red 

regions of the visible spectrum, and reflects green wavelengths, 

which is why humans perceive plants as green. This is because 

the wavelengths associated with red and blue light are able to 

be used in the process of photosynthesis, while photons at 

shorter wavelengths tend to be so energetic that they can cause 

damage to a plant’s cells and DNA, and longer wavelengths do 

not carry enough energy to allow photosynthesis to take place. 

Plants have evolved to reflect these longer wavelengths, 

including in the near-infrared part of the spectrum (about 700-



1100 nm). The following equation describes how NDVI values 

are calculated: 

                                  𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                     (3) 

Where NIR represents the spectral reflectance measurements 

acquired in the near-infrared region, and Red stands for the 

spectral reflectance measurements acquired in the red (visible) 

region. This equation results in values in the range of -1.0 to 

+1.0. This value is directly related to the photosynthetic 

capacity and energy absorption of the plant(s) being 

photographed. A variation of NDVI, called the Normalized 

Difference Red-Edge Index, or NDRE, follows the same 

principles as NDVI, but uses reflectance measurements 

acquired in a narrow band of the spectrum between the 

transition of red to infra-red called red-edge (around 730 nm).  

                             𝑁𝐷𝑅𝐸 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑_𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅+𝑅𝑒𝑑_𝐸𝑑𝑔𝑒)
                     (4) 

The red-edge band of the spectrum is more capable of 

penetrating plants, as lower wavelengths of red light are 

absorbed by chlorophyll in the first few layers of the plant [1]. 

Typically, regions containing dense foliage or plants with high 

amounts of chlorophyll tend to result in NDVI and NDRE 

values in the range of 0.2-0.8, while inorganic surfaces tend to 

result in values closer to 0 or negative values.  

C. Photochemical Reflective Index 

The Photochemical Reflective Index (PRI) is another 

reflective measurement, like NDVI, that is able to characterize 

plant photosynthetic efficiency. PRI is calculated as follows:  

                   𝑃𝑅𝐼 =  
(𝜌550− 𝜌531)

(𝜌550+ 𝜌531)
          (5) 

Where ρ represents reflectance at the specified wavelength (531 

or 550 nm). ρ531 was chosen because it is strongly correlated 

with epoxidation state (EPS) in plants, which is an indicator of 

short-term changes in photosynthetic activity. ρ550 represents 

a reference wavelength, 550 nm was chosen simply because it 

results in less drift in the reflectance vs EPS relationship. EPS 

is a convenient method of expressing the relative concentrations 

of the xanthophyll cycle pigments. The concentrations of these 

pigments, zeaxanthin (Z), antheraxanthin (A), and violaxanthin 

(V), change with variations in the amount of absorbed 

photosynthetically active radiation (PAR). As the amount of 

PAR increases, the concentration of zeaxanthin increases, while 

the concentration of violaxanthin decreases. Likewise, the 

opposite is true when the amount of absorbed PAR decreases. 

EPS itself can also be calculated, though not through remote 

sensing:  

                                    𝐸𝑃𝑆 =  
(𝑉+0.5∗𝐴)

(𝑉+𝐴+𝑍)
                              (6) 

EPS must be calculated using area-based molar concentrations 

of violaxanthin, antheraxanthin, and zeaxanthin. PRI measures 

carotenoid pigments in live plants, which are used as indicators 

of photosynthetic light use efficiency, and plant stress [3]. Like 

NDVI, the values produced by the equation for PRI range from 

-1.0 to +1.0. 

D. Chlorophyll Index 

The chlorophyll index (CI) measures the total chlorophyll 

content of plants. Chlorophyll is used in the photosynthetic 

process to harness the energy contained in photons to create 

useful compounds for the plant. The chlorophyll index is 

sensitive to variations in the content and concentration of 

chlorophyll in many species of plants. There are two methods 

of calculating the chlorophyll index, CI green and CI red-edge, 

both of which are used in remote sensing. The formula for CI 

green is as follows: 

                                 𝐶𝐼𝐺𝑟𝑒𝑒𝑛 =  
𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛
− 1               (7) 

Where 𝜌𝑁𝐼𝑅  represents the spectral reflectance measurements 

acquired in the NIR region of the spectrum (typically around 

850 nm), and 𝜌𝐺𝑟𝑒𝑛𝑛  represents the spectral reflectance 

measurements acquired in the green part of the spectrum 

(around 530 nm). The formula for CI red-edge is as follows: 

                         𝐶𝐼𝑅𝑒𝑑−𝐸𝑑𝑔𝑒 =  
𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑−𝑒𝑑𝑔𝑒
− 1                     (8) 

Where 𝜌𝑁𝐼𝑅  represents the spectral reflectance measurements 

acquired in the NIR region of the spectrum (typically around 

850 nm), and 𝜌𝑅𝑒𝑑−𝑒𝑑𝑔𝑒  represents the spectral reflectance 

measurements acquired in a narrow band of the spectrum 

between the transition of red to infra-red (around 730 nm) [1]. 

 
Example image using chlorophyll index to measure chlorophyll content in an 

agricultural setting [1]. 

E. Leaf Water Content 

Leaf water content is often a large factor limiting the 

efficiency of photosynthesis in plant life. At this time there is 

no method of determining leaf water content non-destructively 

using only thermal infrared, NIR, and visible wavelengths, as 

these approaches are often influenced by other factors of the 

plants biology and are unsuitable for all species. [4]. However, 

there has been research that suggests for certain species, 

machine learning may be able to determine leaf water content 

non-destructively using visible and NIR wavelengths of light 

[4]. 

F. Leaf Area Index 

Leaf area is an important factor in overall photosynthetic 

activity, the more area of green vegetation that is present and 

exposed to sunlight, the more photosynthesis is able to occur. 

In the past, the only method of measuring leaf area was either 

destructive and resulted in the loss of some of a plant’s leaves, 

or relied on leaves falling from trees to determine the leaf area 

relative to the overall area observed. However, with the 



introduction of remote sensing, there has been more interest and 

research into determining leaf area non-destructively using 

remote sensing. Leaf area can be estimated in two primary 

ways, the first involves the computation of spectral vegetation 

indices, which uses relationships between various indices and 

leaf area to estimate leaf area of the region. The second method 

uses bidirectional reflectance distribution function (BRDF) 

models. Using an optimization procedure, an inverted BRDF 

model with radiometric measurements, an estimate can be made 

of leaf area. However, the process is compute intensive, and 

obtaining the required input parameters can be difficult. 

Relatively new research has been done that shows that by 

inverting a BRDF model with a limited number of datapoints, 

and ensuring clean data, this information can be used either to 

fit a leaf area index equation, or to train a neural fuzzy system, 

both of which can then be applied to large scale remote sensing 

imagery to estimate leaf area measurements [5]. 

G. Existing Work 

Multispectral cameras for use in agriculture and 

conservation do exist and are in production. Examples include 

Sentera’s variety of sensors, the Parrot Sequoia, the Tetracam 

ADC, and the MicaSense RedEdge Sensor. However, these 

devices are proprietary and relatively expensive, generally 

around 3,000 to 5,000 US dollars. The theory behind the 

functionality of this type of device is already well established, 

but there is much work to be done to decrease costs while 

encouraging advancements in remote sensing. 

III. DESIGN 

A. Components 

The initial device will be constructed using a Raspberry Pi 

Compute Module 3+ Lite, mounted to a StereoPi board that 

interfaces with two camera modules, one of which has had its 

infrared filter removed. A Raspberry Pi Compute Module was 

chosen due to its small size and its ability to interface with two 

camera modules. A standard Raspberry Pi has a single camera 

connector, so the only way to connect more than one is by 

multiplexing the cameras into the single camera port. The 

Raspberry Pi Compute Module, on the other hand, is built into 

the form factor of a SO-DIMM module which allows for many 

more GPIOs and interfacing options and supports two camera 

interfaces out of the box. The StereoPi board was chosen over 

the other options due to its small size, which will allow for 

flexibility down the road when it comes to mounting the device 

on a vehicle or using it in the field. The StereoPi board also has 

the necessary I/O for interfacing with two cameras, as well as 

HDMI, Ethernet, and two USB which will be useful for 

development and configuring the Compute Module, while not 

having any other unnecessary I/O that would only serve to 

increase the size and weight of the board. The only downside of 

using a StereoPi is its relatively (in this scenario) high cost. At 

$70, it costs significantly more than most of the other options, 

but its ease of use, small size, and tailored I/O justify the cost. 

A range of general-purpose prototyping boards for use with the 

Raspberry Pi Compute Module are also available and were 

considered for this project. While these boards are generally 

cheaper than a StereoPi board, they usually include far more 

I/O options than are necessary for this project and are 

significantly larger. The ease of use is the same as the StereoPi, 

but when it comes time to move the project from development 

to integration into a final device, the large size would become a 

hindrance. Finally, designing a custom PCB that included only 

the necessary I/O was considered, but this option was ruled out 

because of the expected amount of development time and 

complexity in designing a board and having it manufactured. 

The StereoPi board accomplishes the same thing without the 

added development time. A Pugh matrix describing the design 

and component options and the relevant parameters can be seen 

below: 

 Standard 

RPi with 

mux 

StereoPi Prototyping 

Board 

Custom 

PCB 

Cost + - 0 - 

Size - + - + 

I/O + + + + 

Complexity - + + - 

Total 0 2 1 0 

B. Methodology 

The first iteration of this device will focus on the capture of 

the necessary wavelengths of light in order to determine plant 

health, before moving on to the processing and displaying of 

the data. The setup is quite simple: The Raspberry Pi Compute 

Module is inserted into the SO-DIMM connector of the 

StereoPi board, and the two camera modules are connected to 

the camera interfaces with ribbon cables. A micro SD card 

flashed with a Raspbian image is inserted into the micro SD 

card slot of the StereoPi board. 5-volt power is provided to the 

power leads on the StereoPi board which provides power to the 

board itself as well as the Raspberry Pi, both camera modules, 

and any connected peripherals. Once everything was 

assembled, the Raspberry Pi was booted and configured. The 

camera interfaces were enabled, and the proper functioning of 

both cameras simultaneously was validated. A narrow band 

filter was added to the NoIR camera to allow IR wavelengths to 

pass while blocking red wavelengths. 

After ensuring that both cameras were functioning 

correctly, work began on automating the capture of images 

through use of a Python script. The original approach was to 

automate the capture of images using a shell script with the 

reason being that a shell script could be automatically started 

upon boot of the Raspberry Pi, and it allows for easy control 

over camera parameters when performing image captures. 

Additionally, to minimize latency and the amount of elapsed 

time between captures of the two cameras, it would have been 

necessary to use a daemon running the PiCamera process 

continuously in the background. Without this process running, 

a capture command first has to initialize the PiCamera process 

and camera settings before actually taking a picture, which can 

elapse around 1 second between the command and the picture 

being captured. With the process running in the background, it 

simply must listen for a capture command, and is able to capture 

an image within milliseconds of receiving the command. 



However, after initial testing, it became clear that the use of 

shell scripts would end up requiring more effort than simply 

using a single Python program. The daemon that would have 

been required to use shell scripting was itself composed of two 

python scripts, so it was simpler to code a single python 

program to capture and process the images. The final python 

program first initializes camera settings before beginning a 

continuous image capture sequence. Rather than use a daemon 

to keep the camera process running at all times, this program 

creates a video stream from the cameras and pulls images from 

the stream at set time intervals, currently once every second. 

The image captured from the video stream is actually two 

separate images, one from each sensor taken at the same time 

and displayed next to each other. The first step in processing 

the images for gathering data is to split the image into its left 

and right components. The left image contains the data from the 

NoIR camera module, while the right image contains the data 

from the normal camera module. After saving the original 

image and each of the left and right captures, the next step is to 

split each image into its red, blue, and green components. The 

left image splits into red, green, and blue channels. However, 

the applied filter blocks red and green wavelengths, meaning 

the red channel corresponds to NIR reflectance, and the green 

channel does not contain any useful information. The right 

image splits into red, green, and blue channels, and each of 

these contain useful information for their corresponding 

sections of the spectrum. From there, the NDVI is calculated 

using the NIR reflectance values from the NoIR camera and the 

red reflectance values from the normal camera. A colormap is 

applied after performing a contrast stretch, both of which help 

make the output image easier to interpret. After the NDVI 

image has been saved, the Chlorophyll Index is calculated using 

NIR reflectance values from the NoIR camera module and the 

green reflectance values from the normal camera module. The 

minus one from the Chlorophyll Index formula was excluded, 

as this made it more straight forward to process and display the 

image. As with the NDVI, the Chlorophyll Index image is saved 

after performing a contrast stretch and applying a colormap. See 

Appendix A for the full program. 

The drone was constructed using off the shelf components 

that were either found in the Computer Engineering Lab or 

purchased online. The drone consists of a frame, four motors, 

four electronic speed controllers (ESCs), a GPS module, a flight 

controller, a radio receiver, a telemetry transceiver, and a 

battery. The flight controller is a Pixhawk PX4, which was 

chosen because it supports an open-source flight control 

firmware called ArduPilot. ArduPilot has built in autonomous 

capabilities, and the ability to set missions for the drone to fly 

autonomously. Ardupilot provides stabilization, which is 

important for clear images, and supports a large number of 

sensors and fail safes. Additionally, with the use of a pair of 

transceivers, the drone can be monitored from a ground station, 

and its current objective can be updated at any time. Power for 

the Raspberry Pi and camera modules is provided by a regulated 

5-volt output of the power distribution board mounted 

underneath the top plate of the drone frame. 

IV. TESTING & RESULTS 

A. Camera 

The camera functionality was continually tested throughout 

the programming process. Once the program was completed, 

the camera system was initially tested by capturing and 

displaying images taken from a stationary position on the 

ground. After these preliminary tests, the camera was mounted 

on the drone and tested once more from the airborne, moving 

platform. 

 

 
The StereoPi board and camera mount attached to the drone frame. 
 

Due to limited time and resources caused by the 

Coronavirus and the subsequent suspension of in-person classes 

and access to the college’s campus, the camera system was 

mounted to the drone using tape and hot glue, and the camera 

mounting board was constructed of plywood. The original 

intention was to 3D print a mounting mechanism, but this was 

not possible without access to the robotics lab on campus. 

 

 
Camera module mounting mechanism, with narrow band filter on NoIR 
camera module. Viewed from bottom of drone. 

B. Drone 

After the drone had been fully constructed, it was flight 

tested. It was able to be controlled manually or flown 

autonomously and had a maximum flight time of around 15 

minutes. The transceiver and ground station also functioned 



correctly, allowing for the pilot to see real time telemetry of the 

drone like GPS position, altitude, and battery level. 

 

 
The drone in flight during a test flight. 

C. Results 

The drone and camera system were able to successfully 

operate simultaneously and allow for the capture of NDVI and 

CI images. From one of the test flights: 

 

 
Left: Raw image from NoIR camera module with blue filter. Right: Raw image 

from normal camera module. 
 

From the raw images that were captured, the NDVI and 

Chlorophyll Index were calculated: 

 

 

 
NDVI and the applied colormap. Dark blue corresponds to inorganic matter 
(dirt, concrete, mulch, etc.). Colors to the right correspond to higher 

concentrations of photosynthetic activity. 

 

 

 
Chlorophyll Index and the applied colormap. Leftmost colors correspond to 

inorganic matter (dirt, concrete, mulch, etc.). Colors to the right correspond to 
higher concentrations of chlorophyll. 

D. Discussion 

While some of the original goals of the project were not met, 

like offloading the image processing from the Pi, this project 

was a success. The camera and drone allow for the capture and 

interpretation of data for large pieces of land with regards to 

both NDVI and Chlorophyll Index. Time constraints as well as 

realizations about some of the goals led to differences in the 

final product from what was proposed. The offloading of the 

image processing ended up being unnecessary and overly time 

consuming; the Raspberry Pi Compute Module is more than 

powerful and efficient enough to process the images in real time 

while in flight without effecting performance, and this ends up 

being more convenient, as the images are ready to be viewed 

immediately upon landing.  

Significant advances were made over the previous version 

of this project with the addition of a second camera sensor, 

which allowed for true NDVI calculation, and not just an 

approximation of the index, as well as the ability to calculate 

the Chlorophyll Index. The use of a drone also significantly 

improves the functionality of the system. While the final 

product of the project was different than initially intended, and 

less polished than hoped for, it represents a significant 

advancement from the previous version, and was successful in 

achieving the overall goals for functionality. 
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Appendix A: Real Time Code 

 
import os 

import time 

from datetime import datetime 

import picamera 

from picamera import PiCamera 

import cv2 

import numpy as np 

 

def contrast_stretch(im): 

        in_min = np.percentile(im, 5) 

        in_max = np.percentile(im, 95) 

        out_min = 0.0 

        out_max = 255 

 

        out = im - in_min 

        out *= ((out_min - out_max)/(in_min - in_max)) 

        out += in_min 

 

        return out 

 

# ettings 

countdown = 1                 # Interval between image captures (seconds) 

cam_width = 1280              # Cam sensor width 

cam_height = 480              # Cam sensor height 

 

scale_ratio = 0.5 

 

# Camera resolution height must be dividable by 16, and width by 32 

cam_width = int((cam_width+31)/32)*32 

cam_height = int((cam_height+15)/16)*16 

print ("Used camera resolution: "+str(cam_width)+" x "+str(cam_height)) 

 

# Buffer for captured image settings 

img_width = int (cam_width * scale_ratio) 

img_height = int (cam_height * scale_ratio) 

capture = np.zeros((img_height, img_width, 4), dtype=np.uint8) 

print ("Scaled image resolution: "+str(img_width)+" x "+str(img_height)) 

 

# Initialize camera 

camera = PiCamera(stereo_mode='side-by-side', stereo_decimate=False) 

camera.resolution=(cam_width, cam_height) 

camera.framerate = 20 

camera.hflip = False 

 

counter = 0 

t2 = datetime.now() 

print ("Starting photo sequence") 

for frame in camera.capture_continuous(capture, format="bgra", use_video_port=True, 

resize=(img_width, img_height)): 

        t1 = datetime.now() 

        cntdwn_timer = countdown - int((t1 - t2).total_seconds()) 

         

        # If cowntdown is zero -> record next image 

        if cntdwn_timer == -1: 

                counter += 1 

 



                # Save raw image 

                cv2.imwrite('raw' + str(counter) + '.png', frame) 

 

                # Split image to left and right 

                imgLeft = frame[0:240, 0:320] 

                imgRight = frame[0:240, 320:640] 

                leftName = str(counter) + 'nir.png' 

                rightName = str(counter) + 'r.png') 

                cv2.imwrite(leftName, imgLeft) 

                cv2.imwrite(rightName, imgRight) 

 

                # Split left & right into components 

                b, g, nir, a = cv2.split(imgLeft) 

                b1, g1, r, a1 = cv2.split(imgRight) 

 

                # Calculate NDVI 

                bottom = (nir.astype(float) + r.astype(float)) 

                bottom[bottom == 0] = 0.01 

                ndvi = (nir.astype(float) - r) / bottom 

                ndvi = contrast_stretch(ndvi) 

                ndvi = ndvi.astype(np.uint8) 

                ndvi = cv2.applyColorMap(ndvi, cv2.COLORMAP_JET) 

                cv2.imwrite('ndvi' + str(counter) + '.png', ndvi) 

 

                # Calculate Chlorophyll Index 

                b1 = g1.astype(float) 

                b1[b1 == 0] = 0.01 

                ci = nir.astype(float) / b1 

                ci = contrast_stretch(ci) 

                ci = ci.astype(np.uint8) 

                ci = cv2.applyColorMap(ci, cv2.COLORMAP_SUMMER) 

                cv2.imwrite('ci' + str(counter) + '.png', ci) 

 

                t2 = datetime.now() 

                time.sleep(1) 

                cntdwn_timer = 0 

                next 

 

        key = cv2.waitKey(1) 

 

        # Press q to quit 

        if (key == ord("q")): 

                break 

 

        print("Photo sequence finished") 

 


