EGR343 Green
Architectural Engineering
Lecture Notes
Chapter 3

Chapter 3

1) Sensible Heat + Conduction + Temperature

- Sensible Heat = Motion of Molecules
 - Motion → Heat
 - Quantity of Heat Stored = \(\int \text{Temp} \times \text{Mass} \)
 - Temperature = Measure of this "Motion"

Conduction = Heat Transfer

- Heat flow from hot to cold along a temperature gradient
- In solids, molecular agitation without motion of material
- In gases, molecules collide
- In vacuum, no conduction possible

- "Cold" is just the relative absence of heat

- Resist heat conduction in buildings with insulation, double panes
 - More in Ch. 15

2) Latent Heat

- Amount of heat needed to change "state" (phase)
 - Solid
 - Liquid
 - Gas

- Elements and molecules have 3-phase diagrams

 ![Diagram](image)

 - Normal melting point
 - Critical point
 - Normal boiling point
 - Triple point

JT Wunderlich PhD
Ex 1 H\(_2\)O

Diagram:

- **Atmospheres**
- **At Sea-Level**
- **Solid (Ice/Snow)**
- **Liquid (Water)**
- **GAS** (WATER VAPOR, STEAM)
- **Freeze**
- **Boil**

- **Sublimation** (Go directly from a solid to a gas)
- **This is why dry snow at high altitudes (lower atmospheric pressure) is better for skiing**
- **Better "comfort" (Ch. 4)**
- **Relate to low relative humidity**

Note:

- Can use H\(_2\)O in ARCH. to store heat (e.g., water columns for thermal mass)
- But H\(_2\)O not compressible...
- Refrigerants better for storing heat, especially when compressed (life for air is...)
EVAPORATIVE COOLING

- Evaporation is from a surface
- Boiling is within the entire volume

SWEAT

- Body cooling itself via heat transfer through H₂O
- Into water vapor in air
- If high humidity body can't do this well because air more saturated

- Air movement over surface helps with cooling
- Tall windows and ceilings in humid climates
- And use ceiling fans
- South Pacific
- South-East US
CONVECTION

GAS OR LIQUID: TEMP \rightarrow DENSITY

\Rightarrow LESS DENSE GAS OR LIQUID RISES

\Rightarrow CONVECTION CURRENTS CREATED

\Rightarrow CAN MAKE USE OF

\Rightarrow FOR ENERGY GENERATION

\Rightarrow IN OCEANS

\Rightarrow STRATIFICATION OF AIR

WHEN HOT AIR RISES

\Rightarrow MAY WANT THIS IN HOT CLIMATES TO GET RID OF HEAT

\Rightarrow TALL CEILINGS

\Rightarrow MAY NOT WANT THIS IN COLD CLIMATES

\Rightarrow LOW CEILINGS TO KEEP HEAT NEAR TO PEOPLE

\Rightarrow USE INFILTRATION BARRIERS IN WALLS, AND "WEATHER STRIPPING" AROUND DOORS AND WINDOWS TO PREVENT UNDESIRABLE HEAT LOSS OR GAIN

JT Wunderlich PhD
Heat in CONDUCTION is via elastic collisions between molecules.
Heat in CONVECTION is via motion by the flow of the medium.

E.M. RADIATION
→ TRAVELS LIKE A WAVE → # (GRAVITY)
→ INTERACTS WITH MATTER LIKE A PARTICLE (i.e., PHOTON)
→ WITH EFFECTIVE MASS
→ TYPES OF INTERACTIONS
1. TRANSMITTANCE → JUST PASSES THROUGH MAY BEND (REFRACTION)
2. ABSORBION → CONVERT INTO SENSIBLE HEAT
3. REFLECTANCE → EX/ REFLECTIVE PAINTS ON EXTERIOR WALLS
4. EMITTANCE → EX/ THERMAL MASS FLOOR AT NIGHT

NOTE: This definition is somewhat debatable.
GREEN HOUSE EFFECT

EXhaust GAS TRANSMITS MOST SUNLIGHT BUT REFLECTS MOST HEAT

FENESTRATION
- Design of openings in buildings
- Windows

EXhaust HEAT rises, then heat is released but is reflected back by window

EXhaust EARTH

GREEN HOUSE GASES CHARGE ATMOSPHERE:
- Global Warming
- Ice melts, oceans rise
- Ecosystems unbalanced

JT Wunderlich PhD
EQUILIBRIUM TEMPERATURE

\[T = \mathcal{F}(\text{Absorbance}, \text{Emittance}) \]

EX: FOUR BLOCKS OF SAME MATERIAL
EACH COATED DIFFERENTLY

- WHITE PAINT
 - Absorbance: L
 - Reflected (Emittance): H
 - Equilibrium Temp: Cool
 - Good for exterior paint in not climate

- CHROME
 - Absorbance: H
 - Reflected: L
 - Equilibrium Temp: Warm

- BLACK PAINT
 - Absorbance: H
 - Reflected: H
 - Equilibrium Temp: Hot
 - Not much good for building

- SPECIAL COATING
 - Absorbance: L
 - Reflected: L
 - Equilibrium Temp: Very hot
 - Good for solar collectors

JT Wunderlich PhD
Assume all other interior surface are at 35 Degrees Fahrenheit

\[M_R T_A = \frac{1}{360} \sum_{i=1}^{n} (T_i \times 310) \]

\[M_R T_A = (1000 \times 310) + (20 \times 310) \]

\[M_R T_A = \frac{360 \times 4}{360} + \frac{360 \times 4}{360} \]

\[= 87 \text{ Degrees Fahrenheit} \]

JT Wunderlich PhD
NOTE: SOME CH 3 SECTIONS DISCUSSIONS EXPANDED + MOVED INTO LATER, MORE-ADVANCED LECTURES:

3.14 "HEAT SINKS" ➔ CH 10 "PASSIVE COOLING"

3.15 "HEAT CAPACITY" ➔ CH 7 "PASSIVE"

3.16 "THERMAL RESISTANCE" (R-VALUES, ETC.) ➔ CH 15 "THERMAL ENVIRONMENT"

3.17, 3.18, 3.19 ➔ C15
3.20 "Energy Conversion"

- Nuclear is very efficient but hazardous!
- Fossil fuel is very wasteful

- Approximately 70% of original energy lost:
 - Heat loss
 - Steam loss
 - Electro-mechanical loss (turbines)

- Power loss current in constant resistance of transmission lines

- This is why it's better to transmit high voltages

I.e., since \[P = I^2 R \]

- If \(V \uparrow \), \(I \downarrow \)

- This is also a factor, but to much lesser degree, in home heating
 - Ex: 220V heater
 - Ex: 220V water heaters

- Much of the world uses 220V instead of 110V (used in U.S.)
- But dangerous

JT Wunderlich PhD
To understand hydrogen fuel cells, first research how batteries work. Then research how hydrogen fuel cells use hydrogen and electricity to create hydrogen to create electricity and yield water as a byproduct. Make sure you understand the ‘batteries do not need a fuel’ reminder that a hydrogen fuel cell NEEDS hydrogen to generate electricity (as opposed to generating electricity from a battery). A few hydrogen sources can be recharged by providing electricity to them; however, a hydrogen fuel cell NEEDS a source of hydrogen to generate electricity.

https://www.youtube.com/watch?v=819172JhWkc
https://www.youtube.com/watch?v=IguMuDZkd8I

3.21

Our friends at Phoenix Controls USA doing THIS now.

OUR FRIENDS AT PHOENIX CONTROLS USA DOING THIS.
3.23 "EMBODIED ENERGY"

U.S. ENERGY USE

BUILDINGS

Industry

Most of this is maintenance and construction.

But ~1/4 is in construction.

Also, consider the energy used to create these materials.

All "ventricular" design lectures moved to later case-study examples (e.g., using local materials, methods, etc.).

Note: LEED credits awarded for green construction methods.

JT Wunderlich PhD