Shading and Passive Cooling

Portico, Colonnade, Loggia \(\Rightarrow\) Porch \(\Rightarrow\) Overhang

→ Shade building + outdoor living space etc.

→ Greek + Roman Porticoes + Colonnades + Loggia

→ Greek Revival

→ Ex U.S. South (Hot + Humid)

→ Plantation Porches

→ Allowed large windows; for evaporative cooling

→ Without overheating, house with too much sun

→ Outdoor living + blocked rain

Engawa (Japanese Porch)

→ Sliding wall panels to optimize
 1. Light
 2. Ventilation
 3. View
→ Continuous translucent strip window above

→ Hanging chain for rainwater from gutters

Similar designs in most of Southeast Asia (and tropics)

JT Wunderlich PhD
GREAT AMERICAN ARCHITECTS INFLUENCED BY JAPANESE

1. GREEN + GREEN (CALIFORNIA) [Google Image]
 "GREEN BROTHERS ARCHITECTURE"

2. "FRANK LLOYD WRIGHT OVERHANGS" [Google Image]
 "ALSO, HIS"

 B. USE OF LARGE AREAS OF OPERABLE WINDOWS FOR VENTILATION (EVAPORATIVE COOLING) FOR HOT, HUMID MIDWEST SUMMERS

 C. INSPIRED BY NATURE, CONFORM TO NATURE

 D. LOW-PITCHED ROOFS

 E. CASCADING SMALL WINDOWS

 F. THICK STRUCTURAL MEMBERS

 G. POST & BEAM

 H. VARIOUS WOOD DETAILS

 I. PLANTERS

 J. LARGE & SMALL

 K. FINE ARTICULATION OF DETAILS

 L. SMALL THIN BRICKS

 M. JAPANESE PRINTS ARTWORK

 N. JAPANESE STRAW MATS (TATAMI) INFLUENCE ON ROOM FLOOR PLAN

JT Wunderlich PhD
- **Big Dip for South in Summer Because Sun Directly Overhead Mid-Day**
 - But Must Shade South Just Before and After Mid-Day

- **Horizontal (i.e., Roof and Skylights)**
 - Overheated in Summer
 - Don't Face South
 - Don't Face West Unless Low Pitch and Operable Shades (Thermal Lag Worst)
 - Face East is Ok Because Thermal Lag Minimal
 - Face North Ok for Best Art or Arch. Lighting, but Most Mitigate Cold Northern Wind

- **Direct Sunlight Controlled Best with Horizontal + Some Vertical External Architectural Elements**

- **JT Wunderlich PhD**
2. Diffuse Sunlight

- Given: Max in humid and polluted-air places.

- Design Goal: Controlled best with indoor shading because sunlight coming from everywhere.

3. Reflected Sunlight

- Given: Max in non-humid and non-polluted places.

- Design Goals:
 - Magnified by highly reflective surfaces on adjacent buildings (e.g., reflective glass is very common in U.S. Southwest).
 - Magnified in high-density urban areas.

- Controlled best with outdoor vertical shading.
 - Trees & shrubs.

JT Wunderlich PhD
SHADING METHODS

1. OVERHANGS
 DEPTH = f(SUN ANGLE)
 = f(SEASON)
 = f(LATITUDE)

 SUMMER
 WINTER
 LET IT IN
 BLOCKED!

 SNOW AND WIND LOAD CONCERNS

 SOLUTION: MAKE IT WITH SLATS:
 "BRISE-SOLEIL" GOOGLED IT.
 LIKE ON ARMSTRONG LEED PLATINUM BUILDING TOUR

2. ARBORS
 GOOGLE IMG
 LIKE SLATTED OVERHANG,
 BUT OFTEN DEEPER TO
 SHADE OUTDOOR LIVING SPACE

JT Wunderlich PhD
\[
\begin{align*}
X_{oh} &= \text{OVERHANG WIDTH} \\
Y_{oh} &= \text{HEIGHT OF WINDOWSILL} \\
\frac{Y_{oh}}{Y_{ws}} &= \text{FULL SHADY OVERHANG} \\
\theta_a &= \text{FULL SHADE ANGLE} \\
\theta_b &= \text{"- SUN"} \\
T\tan \theta &= \frac{Y_{oh} - Y_{ws}}{X_{oh}} \\
X_{oh} &= \frac{Y_{oh} - Y_{ws}}{\tan \theta} \\
\theta &= 5(\text{FULL SHADE OR SUN}) \\
\text{TYPE OF BUILDING:} \\
\text{ENVELOPE DOMINATED (BIG BUILDING)} \\
\text{INTERIORITY DOMINATED (HOUSE)} \\
\text{U.S. CLIMATE REGION} & \quad \text{SOUTHERN ELEVATION} & \quad \text{EAST OR WEST ELEVATION} \\
3 \ (\text{SOUTHEAST PA}) & \quad \theta_a, \theta_b & \quad \theta_a, \theta_b \\
11 \ (\text{PHOENIX, AZ}) & \quad 53^\circ, 47^\circ, 63^\circ, 55^\circ & \quad 25^\circ, 32^\circ \\
16 \ (\text{MIAMI, FL}) & \quad 48^\circ, \text{NA} \quad 56^\circ, 49^\circ & \quad 19^\circ, 24^\circ \\
16 \ (\text{MIAMI, FL}) & \quad 48^\circ, \text{NA} \quad 56^\circ, 49^\circ & \quad 14^\circ, 19^\circ \\
\text{NA. = NOT APPLICABLE} \\
\rightarrow \text{PASSIVE SOLAR BEST FOR E.D.} \\
\rightarrow \text{FOR COOLING, E.D. BEST BECAUSE OF HIGH SURFACE-TO-VOLUME RATIO (LESS VOLUME, OVERHEAT)} \\
\rightarrow \text{FOR HEATING, E.D. BEST BECAUSE OF B.P.T. (BALANCE POINT TEMP.)} \\
\rightarrow \text{IF THICK WALLS, DEEP-LY SET WINDOWS CAN CREATE THICK ADOBE IN U.S. SOUTHWEST} \\
\rightarrow \text{SHADOW MAY ENHANCE ARCHITECTURE} \\
\rightarrow \text{SEE WUNDERLICH XSRIBE PROJECT PARTICIPATION (SAN DIEGO, 1985)} \\
\rightarrow \text{LION ANNUAL SAN DIEGO "ORCHID" ARCHITECTURAL AWARD}
\end{align*}
\]
3. **Awnings (Canopies)**
 - **Cheap**
 - Often operable
 - Small ones for windows
 - Larger for porches and outdoor cafes
 - Better than fixed overhangs for passive solar heating

4. **Window Shades**
 - U.S. (cloth or plastic)
 - More costly
 - But:
 - Better thermodynamics
 - Security
 - Need thicker walls

 However, in U.S., walls now need to be thicker for new insulation standards

JT Wunderlich PhD
LOUVERS + BLINDS

A) Horizontal
 - "Blinds"; "Mini-Blinds"
 - "Venetian Blinds"
 - Operable tilt
 - Retractable
 - Put reflective coating on sun-facing side of each louver

B) Vertical
 - Block views
 - Ugly
 - Break easily

JT Wunderlich PhD
GLAZING TREATMENTS

- REFLECTIVE GLASS
 - BLUE, GOLD, BLACK, etc.
 - POPULAR IN U.S. SOUTHWEST

- GLASS BLOCK
 - CAN BE VERY ESTHETIC
 - PRIVACY

TRELLISES

- VERTICAL AND HORIZONTAL ("PERGOLA")
 - ADD VINES TO ENHANCE SHADING WHEN NEEDED (SINCE DECIDUOUS)
 - AND GREAT ESTHETIC

PLANTS

- PLANT HIGH-CANOPY DEciduous TREES NEAR BUILDING
 - LEAVES BLOCK SUMMER SUN

- COLONNADE OF TREES" (SHADE PATHS, LOUNGE PORCH, LOGGIA)

- VINES
 - ON TRELLISES + BALCONIES
 - COVER PARK WALLS
 - PLANTERS ON BALCONIES, WINDOW BOXES

- $↓ / IF PLANT YOUNG
- LEAF TRANSPIRATION CAN COOL AIR
- REDUCE GLARE
- PRIVACY
- ESTHETICS
- FOOD
Balanced Control of Sunlight

Thermal
- Design goals:
 - Max into building when cold
 - Min into building when hot
 - Movable shades during hot months
 - Optimize daylighting all year
- To minimize artificial lighting
- Which is very task-specific
- See ch 13

Natural Daylighting
- Always optimize windows
- Don't avoid east + west windows
- Sunrise with breakfast, sunsets
- Use creative placement of windows, and various floor plans to let light in

1. Clerestories:

2. Floor plans:

3. Light-tubes
 - Google inc.

4. Movable shades + drapes

JT Wunderlich PhD
PASSIVE COOLING

1. Cooling with ventilation
 - Tall ceilings
 - Large windows
 - Low porches
 - Space under building
 - Large attic vents

 Google Image: "Japanese movable wall panels" (Entire walls of doors, and windows)
 Google Image: "Robie House floor plan" (Shutters with adjustable louvers)
 Google Image: "Roof Belvedere"

 Note: Air flow (most fluid mechanics principles), it is non-compressible

 Stack Effect (Convection up and out) and ventilation effect due to aero-dynamics (fluid mechanics)

 Humans comforted by evaporative cooling caused by air blowing on skin, removing moisture and heat from body.

<table>
<thead>
<tr>
<th>Air Velocity (MPH)</th>
<th>Equivalent Temperature Reduction (°F)</th>
<th>Comfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0</td>
<td>Stagnant uncomfortable air</td>
</tr>
<tr>
<td>1</td>
<td>~3.</td>
<td>Noticeable</td>
</tr>
<tr>
<td>2 to 5</td>
<td>5 to 7</td>
<td>Good ventilation</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Gentle Breeze</td>
</tr>
</tbody>
</table>

JT Wunderlich PhD
PHYSICS OF AIR MOVEMENT

AERODYNAMICS

SAME AS FLUID MECHANICS
EXCEPT AIR IS COMPRESSABLE
(LIQUID WATER IS NOT)

FLOW (WIND)

CAUSED BY:
1. \(\Delta \text{PRESSURE} \)
2. CONVECTION CURRENTS = \(f(\Delta t) \)

TYPES:
1. LAMINAR
2. TURBULENT
3. EDDY
4. SEPARATED (INDEPENDENT STREAMS)

AROUND SHAPES:
EX/ROOF PITCHES/ SLOPES

EX/ BUILDING FOOTPRINTS
VENTILATION:
BEST
OK
WORST

 Also, flow = \(f(\text{ADJACENT BUILDINGS, TERRAIN, PREVAILING-WIND DIRECTION, WEATHER, ANOMALIES)} \)

JT Wunderlich PhD
△ Velocity

\[\vec{V} \uparrow \text{IF FLOW CONSTRUCTED} \]

"Bernoulli" Effect

"Venturi" Effect

↓Suck in Air

Typical V Profile = V(Height)

Use Venturi Effect to Ventilate:

Ridge Vents

Soffit Vents

JT Wunderlich PhD
Types of Cooling

1. **Night Flush Cooling**
 - Pre-cool building at night
 - Let in cool night air
 - Thermal mass cools
 - Heat sink sinks heat during day
 - Best for hot, dry climate

2. **Radiant Cooling**
 - "Direct": Roof structure cooled by night
 - Imaged the night sky
 - Concrete
 - "Indirect": Night sky cools a heat-transfer fluid, then building cooled with it
 - Best for hot, dry climate

JT Wunderlich PhD
3. Evaporative Cooling

Direct
- Water put into air as it enters building
- Spray mist
- Air through fountain or water fall or across pond

But: Humidity↑

Indirect
- To get T_{emp} without humidity↑
- Spray water on roof or run water through attic
 - Roof/ceiling then acts as a heat-sink

JT Wunderlich PhD
4 Earth Cooling ("Direct Coupling")

Hot Climates
- Slab on Grade
 - Common in the South

Earth-Sheltered Building
- North

Cold Climate
- Insulation to keep in?
- Foundation must be below frost line
- Basements

Roof Garden
- Can wet soil with sprinklers to increase heat transfer
- Also use trees & shrubs to shade soil
- Can also cover with gravel (white)
 - Shades soil
 - Allows evaporation from soil

Need extra structure
- Drainage
 - Can do in cold climates but
 - Insulate at dirt
 - Earth in garden can add insulating value

5 "Indirect Coupling"
- Air enters building through earth tubes

JT Wunderlich PhD
Passive Cooling

6 Combine Conduction and Convection and Radiation
Then

External Roman Vaults + Domes

Most made from masonry

Vaults:

"Barrel" (or "Tunnel") Vault

"Grown" (or "Cross") Vault

"Cloister" Vault ("Cloister Dome")

Domes:

Math:

Art:

Hemispherical

Cryptal
Not typically Roman

Parabolic

 pointed

Segmented

Octagon

Polygon Base

8 sides

Also Pentagon, Decagon

12 DD Decagon

JT Wunderlich PhD
BASE - STRUCTURES:

Rotunda
Round room under dome

Square base with squinches

Interior view

Square base + pendentives

Dome

Pendentive

≈ Cube

Curved transition between cube and dome
PANTHEON

BUILT IN 27 BC (REBUILT ~126 AD) IN ROME

- LARGEST DOME FOR ~1400 YEARS
- BUILT AROUND A "SPHERE" "OCULUS"
- CIRCULAR HOLE IN CEILING FOR LIGHTING
 - ONLY OTHER LIGHT SOURCE IS LARGE FRONT DOOR
- THERMODYNAMICS

1.2 METERS

43.3 M (142 FT)

ROTUNDA

FLOOR HOLES DRAIN RAIN

GOOGLE IMAGES "PANTHEON"

- THICK WALLS ARE "HEAT-SUCK" AND ABSORB HEAT DURING HOT, HUMID DAYS
- ALSO CONVECTION CURRENTS CREATED
- EVAPORATIVE COOLING FOR PEOPLE
- HEAT RISES AND EXITS OCULUS

6.4 M (21 FT) THICK

1.2 M (4 FT) THICK

JT Wunderlich PhD
Natural (passive) dehumidification

- Best in humid climate

- Desiccant (drying agent)
 - Silica gel
 - Natural zeolite
 - Activated alumina
 - Calcium chloride

Still in development

- Chemicals above give off heat as they work

- They also saturate