Communications

J. Wunderlich, Ph.D.
Computer and Engineering and Science
Elizabethtown College

Communication within Computer and/or CPU

IDATA BUS

. 4 17 ! T 1

Instruction
Register Input
| Arithmetic Stack Memary and
Control LogicUni data Output
Logic
W~ data

Status Register fa-. J address

-

e -
Program Counter |{i address ADDRESS BUS

Inerement

Program Counter addresses instructions to be fetched from memaory

Instruction Register receives fetched instruction

Control Logic creates all routing signals after decoding the fetched instruction

Arithmetic Logic Unit (ALU)} performs arithmetic and logical manipulation of data and addresses

Registers (i.e., general purpose registers) store intermediate results of calculations

Status Reqgister holds status flags and condition codes

"“Memory™ (i.e. “main memaory™) stores data and instructions

Stack stores addresses (or processor status) for returning from program-calls (or interrupts)

InputiOuiput (127 often addressed as memory {i.e., memory-mapped /0]

Communications within Personal Computer

Match speed of CPU, RAM, and Motherboard Eront-Side-Bus (FSB) which
connects CPU and RAM

Socket to plug in CPU (i.e. Intel or AMD)
Chip-set to handle CPU and RAM (and video card and other 1/0O)

Northbridge for RAM and video card control, and restricts overclocking

Southbridge for power, clock, and other 1/O control

Dual-Channel (to handle two banks of RAM concurrently)

Expansion Slots

1SA (almost obsolete)
PCI

AGP

PClexpess

ISA, PCI, and AGP use PARALLEL memory-mapped I/O Bus protocol; But,
PClexpress uses a packetizing SERIAL protocol like that used for Ethernet
TCP/IP

Communication between PCand Devices

— DVI (Digital Visual Interface)
— Audio jacks
— VGA video jack
— Old Mouse and Keyboard DIN 6-pin (now USB)
Parallel (multiple bits side by side), “LPT1,” “LPT2”
— Old printer connections
Serial (one bit at a time per channel), “Com1,” “Com2”
~ USB (Universal Serial Bus)
Replaced most Parallel and Serial
Up to 127 peripherals simultaneously (including Flash memory cards)
Hot insertion and removal
— FireWire for cameras and portable storage
— Network jack “Rj-45” packetizing SERIAL protocol for Ethernet TCP/IP

DATAGRAM (i.e., a "Packet”)

for TCP/IP (Transmission Control Protocol/Internet Protocol)
TCP HEADER

TCP data encapsulated in IP datagram. Figure shows format of TCP header. Its normal size is 20 bytes :

0 15 16 i 31

B | A

16-bit source port number ! 16-bit destination port number :
32-bit sequence number
32-bit acknowledgment number 120 bytes
P UJA[P|RIS|F
Fbit header “‘”"T."‘"?d RiC|S|s|Y|I 16-bit window size
length (6 bits) G iK HlT |N ;\:;
16-bit TCP checksum 16-bit urgent poimnter

— _ Y
/s options (if any) __f

/ data (if any) /

Source: http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

1516 31 SrcPort and DstPort fields identify source and

Y destination ports. These plus source and destination IP
' addresses combine to identify each TCP connection.

16-bit source port number 16-bit destination port number

32-bit sequence number

- sequence number identifies byte in data stream from
32-bit acknowledgment number |20 bytes sending TCP to receiving TCP that the first byte of

— — ATPTRTSF] — N data in this segment represents.
£-bit header F&‘S:El’l‘.-i-_’d R 5| C'. Y1 16-hit window size
length (6 bits) { “‘ |N N
L6-bit TCP checkeum 16-bit urgent pointer acknowledgement number is next sequence numl?er
o ; v that sender of acknowledgement expects to receive.
options (if any) i.e., sequence number plgs 1 of !ast guccessfully
| received byte of data. This field is valid only if ACK flag
{ is on. Once a connection is established Ack flag is
data (if any) always on.

Acknowledgement, SequenceNum, and AdvertisedWindow involved in TCP's sliding window algorithm.The
Acknowledgement and AdvertisedWindow field carry info about flow of data going in other direction. In TCP's
sliding window algorithm receiver advertises a window size to sender using the AdvertisedWindow field. The
sender is then limited to having no more than a value of AdvertisedWindow bytes of unacknowledged data at
any given time. The receiver sets a suitable value for the AdvertisedWindow based on the amount of memory
allocated to the connection for the purpose of buffering data.

header length (in 32-bit words) Required because length of options field is variable.

6-bit Flags field used to relay control info between TCP peers. SYN and Fin flags for establishing and terminating
a TCP connection, ACK flag is set any time Acknowledgement field is valid, implying that the receiver should
pay attention to it. URG flag signifies this segment contains urgent data. When set, UrgPtr indicates where
non-urgent data in this segment begins. PUSH flag signifies sender invoked push operation, which indicates to
receiving side of TCP that it should notify the receiving process of this. RESET flag signifies receiver has
become confused and so wants to abort connection.

Checksum (FOR ERROR DETECTION) is a mandatory field calculated by sender, then verified by receiver.

Option field is maximum segment size option, called MSS. Each end of connection normally specifies this option
on first segment exchanged. It specifies maximum sized segment sender wants to receive.

Data portion of TCP segment (optional, but it’s the actual data you are most likely trying to send!) i.e., everything
else is communication overhead !!

Wunderbot 4 Wireless Communication Rob()t NaVigation

by Jeremy Crouse (advisor: J. Wunderlich)

Although
Wunderbots are
fully autonomous,
the IGVC awards
those who can
respond to
“JAUS”

MISSION INDEPENDENT
TECHNOLOGY INDEPENDENT

VEHICLE PLATFORM INDEPENDENT
COMPUTER RESOURCE INDEPENDENT
OPERATOR USE INDEPENDENT

Wunderbot 4 was one of
only a few to do this

O ey | (of many Universities)

Figure 1: JAUS Independence requirements [3]
SOURCE: : Crouse, J. (2008). The Joint Architecture for Unmanned Systems (JAUS): a subsystem of

the wunderbot 4. Elizabethtown College research report.

https://en.wikipedia.org/wiki/JAUS
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_Jeremy_Crouse_w4_JAUS_EGR494report.pdf

Wunderbot 4 Wireless JAUS Communication
IS like TCP/IP , but different. Used for military comm

Sequence Mumber

Souroe 1D
|||||||||I|||IIIII peide ! I Lol HaHaHE

I - - B | L T o o e L N S b D s D o SO L O 1+ N I PR ST W T

Castination ID
Mﬁ}ﬁﬁ“m "1||||'|'|'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'Im|..... ""'M“HEWW"" Wﬂﬂ'l'l'l'l'l'l'l'l'l'l'uul

Ed Bl Bl B 2 S L My b kL el J".-I.II.-'-L-ZL-'--'.-lLi-11|-1-'--1J-1..!-1-I-'-LLJ.Jn'Ju_.n_-_J.-..!

Lammand CodeCore Mrssane | T M e esage Fraperics. | CAEEAARAEATRRR

N0 A M F X X M 13222120 19 16 17 € 15 14 13 ‘2 ‘1,90 8 E * E & 4 3 2 1 0

BN Sricrity Lesd 0H15 Yersion
EXT) b [= g et
“hrsara Dnmaclion = a; Clata Flang st Dunanidly i Hep “Yarsiir
Zxzermemial Flag

Figore 7: JAUS meszage header detailed structure [6]

OI.JAUS & IGVC

Most recent Wunderbot systems: I Navigation

Wunderbot - Main VI Labview Tutorial

Wunderbot - GPS Subsystem Labview Tutorial
Wunderbot - LADAR Subsystem Labview Tutorial
Wunderbot - JAUS Subsystem Labview Tutorial
Wunderbot - Vision Subsystem Labview Tutorial
Wunderbot - Motor Control Subsystem Labview Tutorial
Wunderbot - Digital Compass Subsystem Labview Tutorial
Wunderbot - MCqglobal08 Subsystem Labview Tutorial
NanoLC Robot Simulation

. "~ Wunderb
Theory and design: gl =

1. Painter, J. and Wunderlich, J.T. (2008). Wunderbot I'V: autonomous robot for international
competition. In Proceedings of the 12th World Multi-Conference on Systemics, Cybernetics and
Informatics: WMSCI 2008, Orlando, FL: (pp. 62-67). And HERE

2. Coleman, D. and Wunderlich, J.T. (2008). O3: an optimal and opportunistic path planner (with
obstacle avoidance) using voronoi polygons. In Proceedings of IEEE the 10th international
Workshop on Advanced Motion Control, Trento, Italy. vol. 1, (pp. 371-376). IEEE Press.

3. JAUS wireless packetized communication by Jeremy Crouse

http://www2.etown.edu/wunderbot/mainVI_tutorial.htm
http://www2.etown.edu/wunderbot/GPS_tutorial.htm
http://www2.etown.edu/wunderbot/ladar_tutorial.htm
http://www2.etown.edu/wunderbot/JAUS_tutorial.htm
http://www2.etown.edu/wunderbot/Vision_tutorial.htm
http://www2.etown.edu/wunderbot/MotorControl_tutorial.htm
http://www2.etown.edu/wunderbot/Compass_tutorial.htm
http://www2.etown.edu/wunderbot/MCglobal08_tutorial.htm
http://www2.etown.edu/wunderbot/nanoLC_Simulation.htm
http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_2008_EGR494_Wunderbot4_Vision_PUBLICATION_final_submittal.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_James_Painter_w4_VISION_EGR494report.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_O3.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_Jeremy_Crouse_w4_JAUS_EGR494report.pdf

DATA BUS
bit 0 ——
Dit 1 =——m——
bit 2 =————
bit 3 =————p
bit 4 =——
Dit 5 =—————p
bit 6 >
bit 7 ey

UART 1

———— % bit 0
— bit 1
—_— bit
Tx —_— bit
\ — bit
R x —_— bit
> bit
—) bit 7

Packet

UART 2

DATA BUS

o g ~r O N

P — e ———

1 start
bit

> to 9 data bits

0to 1

parity
bits

1 to 2
stop bits

N —

Data Frame

http://www.circuitbasics.com/basics-uart-communication/

UART (Universal Asynchronous Receiver Transmitter)
— Translates between Parallel and Serial Communication

Start bit Word data Parity Stop bit
logic 0 | bit logic 1
| | (optional) |

Start by Incoming data sampled at the bit-pulse center Sample
detecting stop bit
transition

from logic 1

to logic 0

A UART frame

From: https://electricimp.com/docs/resources/uart/

https://electricimp.com/docs/resources/uart/

UART (Universal Asynchronous Receiver Transmitter)

Data BugI ‘ E

Control 1/0O |

From: https://learn.sparkfun.com/tutorials/serial-communication/uarts

-
D
ye)
—

Py
X

—
X

00000000
OO0 B WhhN 20O
Parallel
Serial

50X
'_-""‘-h
Tx=

Do-D~
TORJOR
owiIow

RESET

A0-42

-8 |,

cS0,CS81
-CS2

-DDIS

INT |,
-RXRDY |

~TXRDY

Translates between Parallel and Serial Communication

|
|

\NT
-Batbovrt

l l Transmir] Transmir ||
¥ A FIFO A shift
g ¥ l Registers Register
:§ |
e
o ' |
— |
|
| e | Receive - Receive
i K3 fmro |4 swp
I s B | Registers Register
d § ‘
| Tws |
£ 3
s &
L
|
! "
| o
Byl T Logic
§ % f "—J ll’_l Baud Rate
S | | Generator
349

RX

-DIR,-RTS
-OP1,-0P2

-CTS
-RI
-CD
-DSR

https://learn.sparkfun.com/tutorials/serial-communication/uarts

UART (Universal Asynchronous Receiver Transmitter)
— Translates between Parallel and Serial Communication

UART 1 UART 2

DATA BUS DATA BUS
bit 0 =———— — bit 0
Dit 1 =——m—— — bit 1
bit 2 =——— — bit 2
bit 3 =————p — bit 3
bit 4 —————) >< —_— bit 4
Dit 5 =—————p — bit 5
bit 6 =————p — bit 6
bit 7 e —) bit 7

From http://www.circuitbasics.com/basics-uart-communication/

NOTE: This reduces communication wires down to just two

Sometimes the wires (and pins) needed for Communication are reduced by
multiplexing pins, like the Address/Data BUS between an Intel 8051
Microcontroller and External RAM

http://www.circuitbasics.com/basics-uart-communication/

EXTERNAL BIDIRECTIONAL Parallel Address / Data BUS
between an Intel 8051 Microcontroller and External RAM

A[16:8] ADDRESS BUS JA[16:8]
SRAM
Latey 128K x 8
ALE LE
AD[7:0){ ADDRESS / DATA BUS 0 Q YAIT:0)
8051 |
microcontraller)VO[?ZO]
Ccs »0CS
WR! »OWE
IRD »O0E

Wires (and pins) needed for Comm reduced by multiplexing pins, like the
EXTERNAL BIDIRECTIONAL Parallel Address/Data BUS between an Intel
8051 Microcontroller and External RAM (if used)

http://www.eeherald.com/section/design-guide/esmod15.html

EXTERNAL BIDIRECTIONAL SERIAL BUS LAB

Assignment: LAB #4 “Bus Communication between two CircuitTrainers (TTL) and Programmable Logic Controller (PLC)”
COURSE: EGR/CS333 “DIGITAL DESIGN & INTERFACING” (Digital Design Il, Assembly Language, and Interfacing)
SYLLABUS: http://users.etown.edu/w/wunderjt/syllabi/CS333%20Wunderlich,Joseph.htm

INSTRUCTOR: J. Wunderlich PhD

Make NanolineLC Programmable Logic Controller (PLC) implement some of the functionality of one of the circuit
trainers of Lab #3; specifically, shifting in a nibble; And, shifting out a nibble (can be defined simply as a constant
within the PLC), Extra points if you can shift in, store, and then back out of PLC. Extra points for dealing with parity
of bits coming into, or leaving PLC.

Using tri-state buffers and appropriate relays between devices (Phoenix Contact, Arduino, or others located in
lab), and needed control lines communicating within and between devices, create a BIDIRECTIONAL SINGLE WIRE
SERIAL communication DATA BUS shared by the two circuit trainers (with circuits from Lab #3) and the NanolineLC
Programmable Logic Controller (PLC). You can have as many control lines as you wish, but only one shared
bidirectional serial single-wire data bus.

Demonstrate bidirectional serial communication with parity check between each trainer TTL circuit. (as part of
testing, create a data error in the data transmission of your nibble so that the sending and receiving parity don’t
match).

Demonstrate bidirectional serial communication (parity check optional) between each trainer TTL circuit and the
PLC.

Use high-voltage light bulb controlled by the PLC to communicate to the user each data bit received or transmitted to
or from the PLC, Use terminal blocks and wire nuts for safe hi-voltage connections, and keep high voltage wires as
removed as possible from TTL and low-voltage controls of the PLC.

Use your circuit trainer clock generators to see how fast you can communicate to the PLC (i.e., if you can
communicate as fast as the fastest clock generator available)

Create a complete simulation in Logisim of everything above including forced error in data transmission, clock
generators, and a logic facsimile of what your PLC is actually doing (i.e., translate your PLC logical decisions and
actions into equivalent logic gates in Logisim)

http://users.etown.edu/w/wunderjt/syllabi/CS333 Wunderlich,Joseph.htm

— Because of the law of diminishing returns , IPC overhead grows disproportionately to the speedup gained by
increasing the number of Processors/Cores

= However the opposite is somewhat true when considering the increase of nodes on the
internet
— Where the routing benefits of decongesting packet traffic mitigates the IPC growth penalties, and in fact, overall
network speed increases with the number of nodes, but only up until a limit.
m This methodology has now found its way into CPU design
— Read “Breaking the Multicore Bottleneck” Oct, 2016, IEEE Spectrum

http://spectrum.ieee.org/semiconductors/processors/breaking-the-multicore-bottleneck

» This is NOT better than the Ideal Case but may be an improvement on the
upper bound of Amdahl’s Law

Amdahl's Law

Law of Diminishing Returns

>

e
-

Speedup (n)

-

o

1 N processors

Image from: https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.ipg

IPC (Inter-Processor/Core Communication) bottleneck

m |IPC has been a limiting factor in the SCALABILITY of multi-processor/core computing
I
i
I

http://spectrum.ieee.org/semiconductors/processors/breaking-the-multicore-bottleneck
https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.jpg

