
Communications

J. Wunderlich, Ph.D.

Computer and Engineering and Science

Elizabethtown College

Communication within Computer and/or CPU

 Match speed of CPU, RAM, and Motherboard Front-Side-Bus (FSB) which

connects CPU and RAM

 Socket to plug in CPU (i.e. Intel or AMD)

 Chip-set to handle CPU and RAM (and video card and other I/O)

– Northbridge for RAM and video card control, and restricts overclocking

– Southbridge for power, clock, and other I/O control

 Dual-Channel (to handle two banks of RAM concurrently)

 Expansion Slots

– ISA (almost obsolete)

– PCI

– AGP

– PCIexpess

– ISA, PCI, and AGP use PARALLEL memory-mapped I/O Bus protocol; But,

PCIexpress uses a packetizing SERIAL protocol like that used for Ethernet

TCP/IP

Communications within Personal Computer

– DVI (Digital Visual Interface)

– Audio jacks

– VGA video jack

– Old Mouse and Keyboard DIN 6-pin (now USB)

 Parallel (multiple bits side by side), “LPT1,” “LPT2”

– Old printer connections

 Serial (one bit at a time per channel), “Com1,” “Com2”

– USB (Universal Serial Bus)

» Replaced most Parallel and Serial

» Up to 127 peripherals simultaneously (including Flash memory cards)

» Hot insertion and removal

– FireWire for cameras and portable storage

– Network jack “Rj-45” packetizing SERIAL protocol for Ethernet TCP/IP

Communication between PCand Devices

DATAGRAM (i.e., a “Packet”)
for TCP/IP (Transmission Control Protocol/Internet Protocol)

TCP HEADER
TCP data encapsulated in IP datagram. Figure shows format of TCP header. Its normal size is 20 bytes :

Source: http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

SrcPort and DstPort fields identify source and
destination ports. These plus source and destination IP
addresses combine to identify each TCP connection.

sequence number identifies byte in data stream from
sending TCP to receiving TCP that the first byte of
data in this segment represents.

acknowledgement number is next sequence number
that sender of acknowledgement expects to receive.
i.e., sequence number plus 1 of last successfully
received byte of data. This field is valid only if ACK flag
is on. Once a connection is established Ack flag is
always on.

Acknowledgement, SequenceNum, and AdvertisedWindow involved in TCP's sliding window algorithm.The
Acknowledgement and AdvertisedWindow field carry info about flow of data going in other direction. In TCP's
sliding window algorithm receiver advertises a window size to sender using the AdvertisedWindow field. The
sender is then limited to having no more than a value of AdvertisedWindow bytes of unacknowledged data at
any given time. The receiver sets a suitable value for the AdvertisedWindow based on the amount of memory
allocated to the connection for the purpose of buffering data.

header length (in 32-bit words) Required because length of options field is variable.

6-bit Flags field used to relay control info between TCP peers. SYN and Fin flags for establishing and terminating
a TCP connection, ACK flag is set any time Acknowledgement field is valid, implying that the receiver should
pay attention to it. URG flag signifies this segment contains urgent data. When set, UrgPtr indicates where
non-urgent data in this segment begins. PUSH flag signifies sender invoked push operation, which indicates to
receiving side of TCP that it should notify the receiving process of this. RESET flag signifies receiver has
become confused and so wants to abort connection.

Checksum (FOR ERROR DETECTION) is a mandatory field calculated by sender, then verified by receiver.

Option field is maximum segment size option, called MSS. Each end of connection normally specifies this option
on first segment exchanged. It specifies maximum sized segment sender wants to receive.

Data portion of TCP segment (optional, but it’s the actual data you are most likely trying to send!) i.e., everything
else is communication overhead !!

Robot Navigation

Although

Wunderbots are

fully autonomous,

the IGVC awards

those who can

respond to

“JAUS”

Wunderbot 4 was one of

only a few to do this

(of many Universities)

SOURCE: : Crouse, J. (2008). The Joint Architecture for Unmanned Systems (JAUS): a subsystem of

the wunderbot 4. Elizabethtown College research report.

Wunderbot 4 Wireless Communication

by Jeremy Crouse (advisor: J. Wunderlich)

https://en.wikipedia.org/wiki/JAUS
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_Jeremy_Crouse_w4_JAUS_EGR494report.pdf

Wunderbot 4 Wireless JAUS Communication

is like TCP/IP , but different. Used for military comm

Most recent Wunderbot systems:

Wunderbot 4

Wunderbot - Main VI Labview Tutorial

Wunderbot - GPS Subsystem Labview Tutorial

Wunderbot - LADAR Subsystem Labview Tutorial

Wunderbot - JAUS Subsystem Labview Tutorial

Wunderbot - Vision Subsystem Labview Tutorial

Wunderbot - Motor Control Subsystem Labview Tutorial

Wunderbot - Digital Compass Subsystem Labview Tutorial

Wunderbot - MCglobal08 Subsystem Labview Tutorial

NanoLC Robot Simulation

Theory and design:

1. Painter, J. and Wunderlich, J.T. (2008). Wunderbot IV: autonomous robot for international

competition. In Proceedings of the 12th World Multi-Conference on Systemics, Cybernetics and

Informatics: WMSCI 2008, Orlando, FL: (pp. 62-67). And HERE

2. Coleman, D. and Wunderlich, J.T. (2008). O3: an optimal and opportunistic path planner (with

obstacle avoidance) using voronoi polygons. In Proceedings of IEEE the 10th international

Workshop on Advanced Motion Control, Trento, Italy. vol. 1, (pp. 371-376). IEEE Press.

3. JAUS wireless packetized communication by Jeremy Crouse

Navigation

http://www2.etown.edu/wunderbot/mainVI_tutorial.htm
http://www2.etown.edu/wunderbot/GPS_tutorial.htm
http://www2.etown.edu/wunderbot/ladar_tutorial.htm
http://www2.etown.edu/wunderbot/JAUS_tutorial.htm
http://www2.etown.edu/wunderbot/Vision_tutorial.htm
http://www2.etown.edu/wunderbot/MotorControl_tutorial.htm
http://www2.etown.edu/wunderbot/Compass_tutorial.htm
http://www2.etown.edu/wunderbot/MCglobal08_tutorial.htm
http://www2.etown.edu/wunderbot/nanoLC_Simulation.htm
http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_2008_EGR494_Wunderbot4_Vision_PUBLICATION_final_submittal.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_James_Painter_w4_VISION_EGR494report.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/PUBLICATION_O3.pdf
http://users.etown.edu/w/wunderjt/ITALY_2009/REPORT_Jeremy_Crouse_w4_JAUS_EGR494report.pdf

UART (Universal Asynchronous Receiver Transmitter)

– Translates between Parallel and Serial Communication

From http://www.circuitbasics.com/basics-uart-communication/

http://www.circuitbasics.com/basics-uart-communication/

UART (Universal Asynchronous Receiver Transmitter)

– Translates between Parallel and Serial Communication

From: https://electricimp.com/docs/resources/uart/

https://electricimp.com/docs/resources/uart/

UART (Universal Asynchronous Receiver Transmitter)

– Translates between Parallel and Serial Communication

From: https://learn.sparkfun.com/tutorials/serial-communication/uarts

https://learn.sparkfun.com/tutorials/serial-communication/uarts

UART (Universal Asynchronous Receiver Transmitter)

– Translates between Parallel and Serial Communication

NOTE: This reduces communication wires down to just two

Sometimes the wires (and pins) needed for Communication are reduced by

multiplexing pins, like the Address/Data BUS between an Intel 8051

Microcontroller and External RAM

From http://www.circuitbasics.com/basics-uart-communication/

http://www.circuitbasics.com/basics-uart-communication/

EXTERNAL BIDIRECTIONAL Parallel Address / Data BUS

between an Intel 8051 Microcontroller and External RAM

Wires (and pins) needed for Comm reduced by multiplexing pins, like the

EXTERNAL BIDIRECTIONAL Parallel Address/Data BUS between an Intel

8051 Microcontroller and External RAM (if used)

From http://www.eeherald.com/section/design-guide/esmod15.html

http://www.eeherald.com/section/design-guide/esmod15.html

EXTERNAL BIDIRECTIONAL SERIAL BUS LAB
Assignment: LAB #4 “Bus Communication between two CircuitTrainers (TTL) and Programmable Logic Controller (PLC)”

COURSE: EGR/CS333 “DIGITAL DESIGN & INTERFACING” (Digital Design II, Assembly Language, and Interfacing)

SYLLABUS: http://users.etown.edu/w/wunderjt/syllabi/CS333%20Wunderlich,Joseph.htm

INSTRUCTOR: J. Wunderlich PhD

 Make NanolineLC Programmable Logic Controller (PLC) implement some of the functionality of one of the circuit

trainers of Lab #3; specifically, shifting in a nibble; And, shifting out a nibble (can be defined simply as a constant

within the PLC), Extra points if you can shift in, store, and then back out of PLC. Extra points for dealing with parity

of bits coming into, or leaving PLC.

 Using tri-state buffers and appropriate relays between devices (Phoenix Contact, Arduino, or others located in

lab), and needed control lines communicating within and between devices, create a BIDIRECTIONAL SINGLE WIRE

SERIAL communication DATA BUS shared by the two circuit trainers (with circuits from Lab #3) and the NanolineLC

Programmable Logic Controller (PLC). You can have as many control lines as you wish, but only one shared

bidirectional serial single-wire data bus.

 Demonstrate bidirectional serial communication with parity check between each trainer TTL circuit. (as part of

testing, create a data error in the data transmission of your nibble so that the sending and receiving parity don’t

match).

 Demonstrate bidirectional serial communication (parity check optional) between each trainer TTL circuit and the

PLC.

 Use high-voltage light bulb controlled by the PLC to communicate to the user each data bit received or transmitted to

or from the PLC, Use terminal blocks and wire nuts for safe hi-voltage connections, and keep high voltage wires as

removed as possible from TTL and low-voltage controls of the PLC.

 Use your circuit trainer clock generators to see how fast you can communicate to the PLC (i.e., if you can

communicate as fast as the fastest clock generator available)

 Create a complete simulation in Logisim of everything above including forced error in data transmission, clock

generators, and a logic facsimile of what your PLC is actually doing (i.e., translate your PLC logical decisions and

actions into equivalent logic gates in Logisim)

http://users.etown.edu/w/wunderjt/syllabi/CS333 Wunderlich,Joseph.htm

IPC (Inter-Processor/Core Communication) bottleneck
 IPC has been a limiting factor in the SCALABILITY of multi-processor/core computing

– Because of the law of diminishing returns , IPC overhead grows disproportionately to the speedup gained by

increasing the number of Processors/Cores

 However the opposite is somewhat true when considering the increase of nodes on the

internet
– Where the routing benefits of decongesting packet traffic mitigates the IPC growth penalties, and in fact, overall

network speed increases with the number of nodes, but only up until a limit.

 This methodology has now found its way into CPU design
– Read “Breaking the Multicore Bottleneck” Oct, 2016, IEEE Spectrum

http://spectrum.ieee.org/semiconductors/processors/breaking-the-multicore-bottleneck

» This is NOT better than the Ideal Case but may be an improvement on the

upper bound of Amdahl’s Law

Image from: https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.jpg

http://spectrum.ieee.org/semiconductors/processors/breaking-the-multicore-bottleneck
https://www.javacodegeeks.com/wp-content/uploads/2013/02/amdahl.jpg

