EGR/CS230 Computer Architecture & Hi-Tech Fundamentals (J Wunderlich PhD

pembee Aro e re/l (RPA&S6TH TIPS

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a

single unit called a byte. Therefore, ASCII characters most often are stored one per i
byte, with the most significant bit set to 0. The extra bit is sometimes used for spe-
cific purposes, depending on the application. For example, some printers recognize

; an additional 128 8-bit characters, with the most significant bit set to 1. These char-

T, huesandd

c
—TITABLE 14
American Standard Code for Information Interchange (ASCII)
B.B.B,
B.B,B,B, 000 o010 on 100 101 110 m
0000 NULL D SP 0 = P P
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 . 2 B R b r
0011 ETX DC3 - 3 C S c s
0100 EOT DC4 s - D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F v f v
0111 BEL ETB ' 7 G w g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB ¢ : J Z j z
1011 vT ESC + 3 K [k {
1100 FF FS . < L \ | I
1101 CR GS - = M] m)
1110 SO RS . > N A n -
1111 SI uUs / ? O _ o DEL
Control Characters:
NULL NULL DLE Data link escape
SOH Start of heading DC1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
vT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return GS Group separator
SO Shift out RS Record separator
| Shift in Us Unit separator
SP Space DEL Delete

1-5 / Alphanumeric Codes 0O 21

..

ARIT T T A AL

e et b DDA G U M i - B deay s
N e .)

B e \UMBERS
Qhte o (8ase) (8Ase \5\ l\
(=
2 ! T Uvpoiasad |
("% \ & e
s \\ - é
1% |00 4
-5 10 ;)
T \ 1o -
- W1 3
2 |oeo N—
'T LET- A ﬁ
i~ 101 A
T \o1l) -
17 \r00 cé
3 jlel
—‘? 1116 %
5 (AN
:l. \ 0p00 10 .
, Y
C;\ Jq,"'. ‘(V/\L
k ‘Lv& T
GQ‘Q'O‘(*‘\’ \“t ‘
v 4\\
4 » o'
/ &
TABLE 13
Signed Binary Numbers
by Vot oy e
+7 o011 ol o
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
*2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 - un 1000
-1 1 1110 1001
-2 1110 101 1010
-3 1101 1100 1011
-4 1100 1011 1100
-3 1011 1010 10
-6 1010 1001 1110
-7 1001 1000 11

N

'\"OQ?«THﬁL PARTé \’6%""6\‘\"‘5\1

Wl T3
CE\ 5 ¢ S

n ?. ¢ S5 4 T T 12
Mosr AN A Y
e T TR N SR

o 128 6f 22 16 & 4 7 | «\F@T=|

| 0 oI «<— %0 (a),= (o)

Assignment: Homework #10
Course: EGR/CS 230 "MicrocomputerArchitecture"
Instructor: J. Wunderlich
Wednesday: May 4 at 12:30pm
Late penalty: -25% per class period
Revised: 4/13/11, 4/18/11

Show all the bits for IEEE BFP (Binary Floating Point) in single precision for:

a) Va

b) %

c) 1/1024
d 3%

e) -3/4

f) 1.25

g) The biggest possible number
h) The smallest possible number
i)y 1

i O

Show all the bits for IEEE BFP (Binary Floating Point) in double precision for:

a) One trillion
b) One Terabyte (i.e., just Tera of addressable bytes)

In addition to class handout and notes written on board,
READ THIS:

IEEE Standard 754Floatmg Point

Numbers
smumrwmww—u

Mmh‘ R slew

IEEE Standard 754 floating point is the most common representation today for real
numbers on computers, including Intel-based PC's, Macintoshes, and most Unix
platiorms. This article gives a brief overview of IEEE floating point and its
representation. Discussion of arithmetic implementation may be found in the book
mentioned at the bottom of this article.

What Are Floating Point Numbers?

There are several ways to represent real numbers on computers. Fixed point places a
radix point somewhere in the middie of the digits, and is equivalent to using integers
that represent portions of some unit. For example, one might represent 1/100ths of a
unit; if you have four decimal digits, you could represent 10.82, or 00.01. Another
approach is to use rationals, and represent every number as the ratio of two integers.
Floating-point representation - the most common solution - basically represents reals in
scientific notation. Scientific notation represents numbers as a base number and an
exponent. For example, 123456 could be represented as 123456 x 10° In
hexadecimal, the number 123.abc might be represented as 1.23abc x 16°,
Floating-point solves a number of representation problems. Fixed-point has a fixed
window of representation, which limits it from representing very large or very small
numbers. Also, fixed-point is prone to a loss of precision when two large numbers are
divided.

Floating-point, on the other hand, employs a sort of "sliding window" of precision
appropriate to the scale of the number. This allows it to represent numbers from
1,000,000,000,000 to 0.0000000000000001 with ease.

Storage Layout

IEEE floating point numbers have three basic components: the sign, the exponent, and
the mantissa. The mantissa is composed of the fractionand an implicit leading digit
(explained below). The exponent base (2) is implicit and need not be stored.

The following figure shows the layout for single (32-bit) and double (64-bit) precision
floating-point values. The number of bits for each field are shown (bit ranges are in
square brackets):

Sign Exponont Fraction Bias
Single Precision 1[31) 8[30-23] 23 [22-00) 127.
Double Precision 1[63] 11[62-52] 52 [51-00) mal

)

The Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative
number. Flipping the value of this bit flips the sign of the number.

The Exponent

The exponent field needs to represent both positive and negative exponents. To do
this, a bias is added to the actual exponent in order to get the stored exponent. For
IEEE single-precision floats, this value is 127. Thus, an exponent of zero means that
127 is stored in the exponent field. A stored value of 200 indicates an exponent of (200-
127), or 73. For reasons discussed later, exponents of -127 (all Os) and +128 (all 1s)
are reserved for special numbers,

For double precision, the exponent field is 11 bits, and has a bias of 1023.

The Mantissa

The mantissa, also known as the significand, represents the precision bits of the
number. It is composed of an implicit leading bit and the fraction bits.

To find out the value of the implicit leading bit, consider that any number can be
expressed in scientific notation in many different ways. For example, the number five
mb:owbduanyofm

5.00 = 10°

0.05 = 10°

5000 = 10

In order to maximize the quantity of representable numbers, floating-point numbers are
typically stored in normalized form. This basically puts the radix point after the first non-
zero digit. In normalized form, five is represented as 5.0 x 10°

A nice little optimization is available to us in base two, since the only possible non-zero
digit is 1. Thus, we can just assume a leading digit of 1, and don't need to represent it
explicitly. As a result, the mantissa has effectively 24 bits of resolution, by way of 23
fraction bits.

Putting it All Together

So, to sum up:

1. The sign bit is 0 for positive, 1 for negative.

2. The exponent's base is two.

3. The exponent field contains 127 plus the true exponent for single-precision, or
1023 plus the true exponent for double precision.

4. The first bit of the mantissa is typically assumed to be 1.1, where [is the field of
fraction bits.

Ranges of Floating-Point Numbers

Let's consider single-precision floats for a second. Note that we're taking essentially a
32-bit number and re-jiggering the fields to cover a much broader range. Something
has to give, and it's precision. For example, regular 32-bit integers, with all precision
centered around zero, can precisely store integers with 32-bits of resolution. Single-
precision floating-point, on the other hand, is unable to match this resolution with its 24
bits. It does, however, approximate this value by effectively truncating from the lower
end. For example:

11110000 11001100 10101010 00001111 # 32-bit integer
= +1.1110000 11001100 10101010 x 2*' ¥ Single-Precision Float
= 11110000 11001100 10101010 00000000 # Corresponding Value

)

This approximates the 32-bit value, but doesn't yield an exact representation. On the
other hand, besides the ability to represent fractional components (which integers lack
completely), the floating-point value can represent numbers around 2'7, compared to
32-bit integers maximum value around 2%,

The range of positive floating point numbers can be split into normalized numbers
(which preserve the full precision of the mantissa), anddenormalized numbers
(discussed later) which use only a portion of the fractions's precision.

_)
Denormalized Normalized . mo.c" - ’mm"" "
~149 . A28

pondle, RETROZUT LT ORRT sigusio1ge
1074 42 . 022 .

,,°°""""""M s o022 f:,izam”‘z'z £ ~107"3 10 ~10°*?

Since the sign of floating point numbers is given by a special leading bit, the range for
negative numbers is given by the negation of the above values.

1. Negative numbers less than -(2-2%) x 2'7 (negative overflow)
Negative numbers greater than -2"'** (negative underflow)
Zero

Positive numbers less than 2'** (positive underflow)

Positive numbers greater than (2-2%) x 2'7 (positive overflow)

Overflow means that values have grown too large for the representation, much in the
same way that you can overflow integers. Underflow is a less serious problem because
is just denotes a loss of precision, which is guaranteed to be closely approximated by

zero,
Here's a table of the effective range (excluding infinite values) of IEEE floating-point
numbers:

2.
3.
4.
5.

Binary Decimal

Single $(22%)x2"" ~310%%

Double £ (22%) x 2" ~310™*®
Mmmmmmgw'dﬂm)mnmwisdm
maximum value for finite numbers (2'* for single-precision, 2" for double), and the
mantissa is filled with 1s (including the normalizing 1 bif).

Special Values

IEEE reserves exponent field values of all 0s and all 1s to denote special values in the
Zero

As mentioned above, zero is not directly representable in the straight format, due to the
assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of

)

zero). Zero is a special value denoted with an exponent field of zero and a fraction field
of zero. Note that -0 and +0 are distinct values, though they both compare as equal.
Denormalized

If the exponent is all Os, but the fraction is non-zero (else it would be interpreted as
zero), then the value is a denormalized number, which does nof have an assumed
leading 1 before the binary point. Thus, this represents a number (-1)* x 0.f x 2%,
Mmsbmlmbland!nmohwon For double precision, denormalized numbers
are of the form(-1)* x 0.f x 2% From this you can interpret zero as a special type of
denormalized number.

Infinity

The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of
all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being
able to denote infinity as a specific value is useful because it allows operations to
continue past overflow situations. Operations with infinite values are well defined in
IEEE floating point.

Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a
non-zero fraction. There are two categories of NaN: QNaN(Quiet NaN) and
SNaN(Signalling NaN).

A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely
through most arithmetic operations. These values pop out of an operation when the
result is not mathematically defined.

An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an
exception when used in operations. SNaN's can be handy to assign to uninitialized
variables to trap premature usage.

Semantically, QNaN's denote indeterminate operations, while SNaN's denote invalid
operations.

Special Operations

Operations on special numbers are well-defined by IEEE. In the simplest case, any
operation with a NaN yields a NaN result. Other operations are as follows:

Operation Result

n + #infinity 0
+infinity x +infinity +Infinity
snonzero +0 +infinity
Infinity + Infinity Infinity

0 + 30 NaN
mﬁnuy Infinity ~ NaN
wnaty+mm NaN

. tinfinityx0 NaN

)

Summary
To sum up, the following are the corresponding values for a given representation:

Float Values (b = bias) ;
Sign Exponent (e) Fraction (f) Value :
0 00..00 00..00 +0 .
| 00..01
0 00..00 : Pmmmw Real
0.fx2'
11..11 v
00.01 |
0 . XXX Positive Normalized Real
o110 1./% 29
| o | |
0 1.1 | 00.00 | +Infinity
' 00.01 | i '
0 1.1 : SNaN
01..11
10..00
0 1.1 : QNaN
11..11
1 00..00 00..00 0 l
00.01 \ocative Denormaiized Real |
1 00..00 - 2+1)
11.11 0% 2 ‘
00..01 .
1 : XX XX Negative Normalized Real ‘
Afx 28
11..10
1 1.1 | 00..00 -Infinity .
00..01
1 111 . | SNaN
01.11 g
10..00 y
1 11..11 : QNaN i
11.11

)

References

A lot of this stuff was observed from small programs | wrote to go back and forth
between hex and floating point (printf-style), and to examine the results of various
operations. The bulk of this material, however, was lifted from Stallings' book.

1. Computer Organization and Architecture, William Stallings, pp. 222-234

Macmillan Publishing Company, ISBN 0-02-415480-6

2.|IEEE Computer Society (1985),/EEE Standard for Binary Floating-Point

Arithmetic, IEEE Std 754-1985.

3.Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, (a PDF
document downloaded from jntel.com.)

See Also

IEEE Standards Site
-Comparmg floating point numbers, Bruce Dawson. hitp//www.cvanus
software.com/papers/comparinafloats/compa ringfloats.htm, This is an excellent article
on the traps, pitfalls and solutions for comparing floating point numbers. Hint- epsilon
comparison is usually thewrongsolution.

. x86 Processors and Infinity, Bruce Dawson. http://www.cvanus-
software.com/papers/x86andinfinitv.html. This is another good article covering

performance issues with IEEE specials on X86 architecture.

© 2001-2005 Steve Hollasch

Conversion Examples to help with Fractional Part of IEEE Floating Point
J.Wunderlich PhD

dapted from hilp./‘sandbon mi odw —bonmet/ca L0Vl deod ham
o| mdded bolds and underlings for fractional parts, and italics and small fomt for exponents)

Convert -1313.3125 to IEEE 32-bit floating point format.
The integral part is 1313,, = 10100100001;. The fractional:

03128 x2= (0625 0 Generate 0 and continue.
0.625 x2= 125 1 Generate 1 and continue with the rest.
0.25 x2= 05 0 Generate 0 and continue.
05 x2= 10 1 Generate 1 and nothing remains.
S0 13133125, = 10100100001.0101..

Normalize: 10100100001.0101, = 1.01001000010101, x 2".

Mantissa is 01001000010101000000000, exponent is 10 + 127 = 137 = 10001001,, Sign bit is 1.
So -1313.3128 is 11000100101001000010101000000000 = c4a42a00,,

Convert 0.101562S to IEEE 32-bit floating point format.

01015625 x2= 0203125 0 Generate 0 and continue.

0.203125 x2= 040825 0 Generate 0 and continue.

0.40625 x2= 08125 0 Generate 0 and continue.

0.8125 x2= 1625 1 Generate 1 and continue with the rest.
0.625 x2= 125 1 Generate 1 and continue with the rest.
025 x2= 05 0 Generate 0 and continue.

05 x2= 10 1 Generate 1 and nothing remains.

So 0.1015625,, = 0.0001101..

Normalize: 0.0001101; = 1.101, x 2.
Mantissa is 10100000000000000000000, exponent is -4 + 127 = 123 = 01111011,, sign bit is 0.

So 0.1015625 is 00111101110100000000000000000000 = 3dd00000,e

Convert 39887.5625 to IEEE 32-bit floating point format.
The integral part is 39887, = 1001101111001111,. The fractional:
05625 x2= 1125 1 Generate 1 and continue with the rest.
0.125 x2= 025 0 Generate 0 and continue.
0.25 x2= 05 0 Generate 0 and continue.
05 x2= 10 1 Generate 1 and nothing remains.
So 398875625, = 1001101111001111.1001,.

Normalize: 1001101111001111.1001, = 1.0011011110011114001, x 2'%.
Mantissa is 00110111100111110010000, exponent is 15 + 127 = 142 = 10001110s Sign bit is 0.

So 39887.5625 is 01000711000110111100111110010000 = 471bcf00, ﬁ >>>>

W 2 = Yz = (Lo), x2" P Pk

101111110 50 000000

|

2

- - se¢-
Q) \![y = \Zzu =U-0) xzw .ngé_ﬂnﬁ

Tolopnnwoi1oy r@;m:.’_‘._\oggg 4!

23 "

Q) 2y = O/ = (NaxZ x4 et
IWL
bl } » W = J 27
(' iral '.'#H =-{‘| D + 2 A -\lzt:"h
| ﬁlounnm\w

%

£) 1.25:=54=O™x= o) x27 = 1OV X2T "

folo nmwlmw
K = A
Q) . €C=155 = 0ol = 255~-1L1=12% O*: i
¥ - - - "f‘ -~
OIVI1 LY ..0000
- 23 ®
i e | N
SR s f
T 0(560.,00'00_\0]

s 3 :

- e ——— e = = - ‘.-,..._-..1—-_--‘--- r—— e e ——

Vol =0.0). %2 ® st
\o\o\\\\n\VQooo 000
_13

D o (from Seet)
Yo\oooooooo\qooo ooo@‘\

douow ' preos\on
a) 1,000,000,000,000
(whb\otooco\omo!ooo\w

\J-.”-‘

Zno; Q0011010100101 001 0 ooosoocvocmoooo\;

[oliooo0o 100 11 0110100011 0101001 01001016601 06O ...
M
¢ R 5

|B) feaoge = 270 = |0 x240 MO=eH0 o ine3

|E]\0000\oo\\\\000000 000 |
=

