Convert -1313.3125 to IEEE 32-bit floating point format.
The integral part is $1313_{10}=10100100001_{2}$. The fractional:
$0.3125 \times 2=0.625 \quad 0 \quad$ Generate 0 and continue.
$0.625 \times 2=1.251 \quad$ Generate 1 and continue with the rest.
$0.25 \times 2=0.5 \quad 0 \quad$ Generate 0 and continue.
$0.5 \times 2=1.0 \quad 1 \quad$ Generate 1 and nothing remains.
So $1313 . \underline{3125}_{10}=10100100001 . \underline{\mathbf{0 1 0 1}}_{2}$.
Normalize: $10100100001 . \underline{\mathbf{0 1 0 1}_{2}}=1.0100100001 \underline{0101_{2}} \times 2^{10}$.
Mantissa is 01001000010101000000000 , exponent is $10+127=137=10001001_{2}$, sign bit is 1 . So -1313.3125 is $1100010010100100001 \underline{101000000000=c 4 a 42 a 00_{16}}$

Convert 0.1015625 to IEEE 32-bit floating point format.
$0 . \underline{1015625} \times 2=0.203125 \quad 0 \quad$ Generate 0 and continue.
$0.203125 \times 2=0.40625 \quad 0 \quad$ Generate 0 and continue.
$0.40625 \times 2=0.8125 \quad 0 \quad$ Generate 0 and continue.
$0.8125 \times 2=1.6251 \quad$ Generate 1 and continue with the rest.
$0.625 \times 2=1.2511$ Generate 1 and continue with the rest.
$0.25 \times 2=0.5 \quad 0 \quad$ Generate 0 and continue.
$0.5 \times 2=1.0 \quad 1 \quad$ Generate 1 and nothing remains.
So $0 . \underline{1015625}_{10}=0 . \underline{0001101}_{2}$.
Normalize: $0.0001101_{2}=1.101_{2} \times 2^{-4}$.
Mantissa is $\underline{10100000000000000000000, ~ e x p o n e n t ~ i s ~}-4+127=123=011110112$, sign bit is 0 .
So 0.1015625 is $00111101110100000000000000000000=3 d d 00000_{16}$

Convert 39887.5625 to IEEE 32-bit floating point format.
The integral part is $39887_{10}=1001101111001111_{2}$. The fractional:
$0.5625 \times 2=1.1251 \quad$ Generate 1 and continue with the rest.
$0.125 \times 2=0.25 \quad 0 \quad$ Generate 0 and continue.
$0.25 \times 2=0.50 \quad$ Generate 0 and continue.
$0.5 \times 2=1.0 \quad 1 \quad$ Generate 1 and nothing remains.
So $39887 . \underline{5625}_{10}=1001101111001111 . \underline{1001}_{2}$.
Normalize: $1001101111001111 . \mathbf{1 0 0 1}_{2}=1.001101111001111 \underline{1001_{2}} \times 2^{15}$.

So $39887 . \underline{5625}$ is $010001110001101111001111 \underline{10010000=471 \text { bcf } 90_{16}}$

