
A.11 GRAPHICS CARDS, Historical Perspective
(edited by J Wunderlich PhD in 2020)

Graphics Pipeline Evolution
3D graphics pipeline hardware evolved from the large expensive systems of the early 1980s to small
workstations and then to PC accelerators in the 1990s, to $X,000 graphics cards of the 2020’s During this
period, three major transitions occurred:

1. Performance-leading graphics subsystems PRICE changed from $50,000 in 1980’s down to
$200 in 1990’s, then up to $X,0000 in 2020’s.

2. PERFORMANCE increased from 50 million PIXELS PER SECOND in 1980’s to 1 billion
pixels per second in 1990’’s and from 100,000 VERTICES PER SECOND to 10 million
vertices per second in the 1990’s. In the 2020’s performance is measured more in FRAMES
PER SECOND (FPS)

3. Hardware RENDERING evolved from WIREFRAME to FILLED POLYGONS, to FULL-
SCENE TEXTURE MAPPING

Fixed-Function Graphics Pipelines
Throughout the early evolution, graphics hardware was configurable, but not programmable by the
application developer. With each generation, incremental improvements were offered. But developers were
growing more sophisticated and asking for more new features than could be reasonably offered as built-in
fixed functions. The NVIDIAGeForce 3, described by Lindholm, et al. [2001], took the first step toward true
general shader programmability. It exposed to the application developer what had been the private internal
instruction set of the floating-point vertex engine. This coincided with the release of Microsoft’s DirectX 8
and OpenGL’s vertex shader extensions. Later GPUs, at the time of DirectX 9, extended general
programmability and floating point capability to the pixel fragment stage, and made texture available at the
vertex stage. The ATI Radeon 9700, introduced in 2002, featured a programmable 24-bit floating-point pixel
fragment processor programmed with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point
pixel processors. This was part of a general trend toward unifying the functionality of the different stages, at
least as far as the application programmer was concerned. NVIDIA’s GeForce 6800 and 7800 series were built
with separate processor designs and separate hardware dedicated to the vertex and to the fragment processing.
The XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and pixel shaders to
execute on the sameprocessor.

A.11-2 A.11 Historical Perspective and Further Reading

Evolution of Programmable Real-Time Graphics
Graphics architecture has evolved from a simple pipline for drawing wireframe diagrams to a highly
parallel design consisting of several deep parallel pipelines capable of rendering complex interactive
imagery that appears three-dimensional. Concurrently, many of the calculations involved became far
more sophisticated and userprogrammable.
In these GRAPHICS PIPELINES in GPU (Graphics Processing Unit, on Graphics card, or

“Integrated” onMotherboard)), certain stages do a great deal of floating-point arithmetic on completely
independent data, such as transforming the position of triangle vertexes or generating pixel colors. This
data independence is a key difference between GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have 1 million triangles and 6 million pixels. The opportunity to use hardware parallelism
to exploit this data independence istremendous.
The specific functions executed at a few graphics pipeline stages vary with rendering algorithms and

have evolved to be programmable. Vertex programs map the position of triangle vertices on to the screen,
altering their position, color, or orientation. Typically a vertex shader thread inputs a floating-point (x, y,
z, w) vertex position and computes a floating-point (x, y, z) screen position. Geometry programs operate
on primitives defined by multiple vertices, changing them or generating additional primitives. Pixel
fragment shaders each “shade” one pixel, computing a floating-point red, green, blue, alpha (RGBA) color
contribution to the rendered image at its pixel sample (x, y) image position. For all three types of
graphics shaders, program instances can be run in parallel, because each works on independent data,
produces independent results, and has no side effects.
Between these programmable graphics pipeline stages are dozens of fixed- function stages which

perform well-defined tasks far more efficiently than a programmable processor could and which would
benefit far less from program- mability. For example, between the geometry processing stage and the
pixel processing stage is a “rasterizer,” a complex state machine that determines exactly which pixels (and
portions thereof) lie within each geometric primitive’s bound- aries. Together, the mix of programmable
and fixed-function stages is engineered to balance extreme performance with user control over the
rendering algorithms. Common rendering algorithms perform a single pass over input primitives and
access other memory resources in a highly coherent manner; these algorithms pro- vide excellent
bandwidth utilization and are largely insensitive to memory latency. Combined with a pixel shader
workload that is usually compute-limited, these characteristics have guided GPUs along a different
evolutionary path than CPUs. Whereas CPU die area is dominated by cache memory, GPUs are
dominated by floating-point datapath and fixed-function logic. GPU memory interfaces empha- size
bandwidth over latency (since latency can be readily hidden by a high thread count); indeed, bandwidth
is typically many times higher than a CPU, exceeding 100 GB/second in some cases. The far-higher
number of fine-grained lightweight threads effectively exploits the rich parallelismavailable.

A.11 Historical Perspective and Further Reading A.11-3

Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable
graphics stages are mapped to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three times,
with much fixed-function graphics logic between visits. Since different rendering
algorithms present wildly different loads among the three programmable stages,
this unification provides processor loadbalancing.

Unified Graphics and Computing Processors
Bythe DirectX 10 generation, the functionality of vertex and pixel fragment shaders
was to be made identical to the programmer, and in fact a new logical stage was
introduced, the geometry shader, to process all the vertices of a primitive rather
than vertices in isolation. TheGeForce 8800was designedwith DirectX 10 in mind.
Developers were coming up with more sophisticated shading algorithms, and this
motivated a sharp increase in the available shader operation rate, particularly
floating-point operations. NVIDIA chose to pursue a processor design with higher
operating frequency than standard-cell methodologies had allowed to deliver the
desired operation throughput as area-efficiently as possible. High-clock-speed
design requires substantially more engineering effort, and this favored designing
one processor, rather than two (or three, given the new geometry stage). It became
worthwhile to take on the engineering challenges of a unified processor (load
balancing and recirculation of a logical pipeline onto threads of the processor
array) to get the benefits of one processordesign.

GPGPU: an Intermediate Step
AsDirectX 9–capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9GPUs had been designed only to match
the features required by the graphics API. To access the computational resources, a
programmer had to cast their problem into native graphics operations. For example,
to run many simultaneous instances of a pixel shader, a triangle had to be issued to
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did
not have the means to perform arbitrary scatter operations to memory. The only
way to write a result to memory was to emit it as a pixel color value, and configure
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass
of computation to the next was to write all parallel results to a pixel framebuffer,
then use that framebuffer as a texture map as input to the pixel fragment shader of
the next stage of the computation. Mapping general computations to a GPU in this
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful
of useful applications with painstaking efforts. This field was called “GPGPU” for
general purpose computing onGPUs.

A.11-4 A.11 Historical Perspective and Further Reading

GPU Computing
While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its
potential usefulness would bemuch greater if programmers could think of the GPU
as a processor. NVIDIA selected a programming approach in which programmers
would explicitly declare the data-parallel aspects of their workload.
For the DirectX 10 generation, NVIDIA had already begun work on a high-

efficiency floating-point and integer processor that could run a variety of simul-
taneous workloads to support the logical graphics pipeline. This processor was
designed to take advantage of the common case of groups of threads executing the
same code path. NVIDIA added memory load and store instructions with integer
byte addressing to support the requirements of compiled C programs. It
introduced the thread block (cooperative thread array), grid of thread blocks, and
barrier synchronization to dispatch and manage highly parallel computing work.
Atomic memory operations were added. NVIDIA developed the CUDA C/C++
compiler, libraries, and runtime software to enable programmers to readily
access the new data-parallel computation model and developapplications.

Scalable GPUs
Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horsepower by
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the
VGA controller. As 3D-capable accelerators appeared, the market had room for a
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan
Line Interleave) on their Voodoo2, which held the performance crown for its time
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first
by speed binning and packaging, then with separate chip designs (GeForce 2GTS&
GeForce 2MX). At present, for a given architecture generation, four or five separate
GPU chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and workstation
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in
2004, starting with GeForce 6800—providing multi-GPU scalability transparently
to the programmer and to the user. Functional behavior is identical across the
scaling range; one application will run unchanged on any implementation of an
architectural family.
CPUs are scaling to higher transistor counts by increasing the number of

constant-performance cores on a die, rather than increasing the performance of a
single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to
eightfold task parallelism to fully utilize these processors, and applications using
task parallelismmust be rewritten frequently to target eachsuccessive doubling

A.11 Historical Perspective and Further Reading A.11-5

of core count. In contrast, the highly multithreaded GPU encourages the use of
many-fold data parallelismand thread parallelism, which readily scales to thousands
of parallel threads on many processors. The GPU scalable parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once and
runs on a GPU with any number of processors. As shown in Section A.3, a CUDA
programmer explicitly states both fine-grained and coarse-grained parallelism in
a thread program by decomposing the problem into grids of thread blocks—the
same program will run efficiently on GPUs or CPUs of any size in current and
future generations as well.

Recent Developments
Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these programs run
the application tens or hundreds of times faster than multicore CPUs are capable
of running them. Examples include n-body simulation, molecular modeling,
computational finance, and oil and gas exploration data processing. Although
many of these use single precision floating-point arithmetic, some problems require
double precision. The recent arrival of double precision floating point in GPUs
enables an even broader range of applications to benefit from GPUacceleration.
For a comprehensive list and examples of current developments in
applications that are accelerated byGPUs, visit CUDAZone:

https://developer.nvidia.com/cuda-toolkit w.nvidia.com/CUDA.

Trends
Naturally, the number of processor cores will continue to increase in proportion
to increases in available transistors as silicon processes improve. In addition, GPUs
will continue to enjoy vigorous architectural evolution. Despite their demonstrated
high performance on data-parallel applications, GPU core processors are still of
relatively simple design. More aggressive techniques will be introduced with each
successive architecture to increase the actual utilization of the calculating units.
Because scalable parallel computing on GPUs is a new field, novel applications are
rapidly being created. By studying them, GPU designers will discover and
implement new machine optimizations. In 2020, GPU’s have over 2000 CUDA
CORES

Further Reading
Akeley,K.and T.Jermoluk [1988].“High-Performance Polygon Rendering,”Proc. SIGGRAPH 1988 (August),
239–46.

Akeley,K.[1993].“RealityEngine Graphics.”Proc. SIGGRAPH 1993 (August), 109–16.

Blelloch, G. B. [1990]. “Prefix Sums and Their Applications.” In John H. Reif (Ed.), Synthesis of Parallel
Algorithms,Morgan Kaufmann Publishers, San Francisco.

https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/CUDA

A.11-6 A.11 Historical Perspective and Further Reading

Blythe, D. [2006].“The Direct3D 10 System,”ACMTrans. Graphics,Vol.25, no. 3 (July), 724–34.

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahlian, M. Houston, and P. Hanrahan [2004]. “Brook for GPUs:
Stream Computing on Graphics Hardware.” Proc. SIGGRAPH 2004, 777–86, August. http://doi.acm.org/10.1145/
1186562.1015800

Elder, G. [2002] “Radeon 9700.” Eurographics/SIGGRAPH Workshop on Graphics Hardware, Hot3D Session,
www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt

Fernando, R. and M. J. Kilgard [2003]. The Cg Tutorial: The Definitive Guide to Programmable Real-Time
Graphics,Addison-Wesley,Reading, MA.

Fernando, R. ed. [2004]. GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics,
Addison-Wesley,Reading, MA.http://developer.nvidia.com/object/gpu_gems_home.html.

Foley, J., A.van Dam, S.Feiner, and J.Hughes [1995]. Computer Graphics: Principles and Practice, second edition
in C,Addison-Wesley,Reading, MA.

Hillis, W. D. and G. L. Steele [1986]. “Data parallel algorithms.” Commun. ACM29, 12 (Dec.), 1170–83. http://
doi.acm.org/10.1145/7902.7903.

IEEE Std 754-2008 [2008]. IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8, STD95802,
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933 (Aug.29).

Industrial Light and Magic [2003]. OpenEXR,www.openexr.com.

Intel Corporation [2007]. Intel 64 and IA-32 Architectures Optimization Reference Manual. November. Order
Number: 248966-016.Also: www3.intel.com/design/processor/manuals/248966.pdf.

Kessenich, J. [2006]. The OpenGL Shading Language, Language Version 1.20, Sept. 2006. www.opengl.org/
documentation/specs/.

Kirk, D. and D. Voorhies [1990]. “The Rendering Architecture of the DN10000VS.” Proc. SIGGRAPH 1990
(August), 299–307.

Lindholm E., M. J.Kilgard, and H. Moreton [2001].“AUser-Programmable Vertex Engine.”Proc. SIGGRAPH
2001 (August),149–58.

Lindholm E., J.Nickolls, S.Oberman, and J.Montrym [2008].“NVIDIA Tesla: AUnified Graphics and Com-
puting Architecture.”IEEEMicro,Vol.28,no. 2 (March–April), 39–55.

Microsoft Corporation. Microsoft DirectX Specification, http://msdn.microsoft.com/directx/

Microsoft Corporation. [2003]. Microsoft DirectX 9 Programmable Graphics Pipeline, Microsoft Press,
Redmond, WA.

Montrym, J., D. Baum, D. Dignam, and C. Migdal [1997]. “InfiniteReality: AReal-Time Graphics System.”
Proc. SIGGRAPH1997 (August), 293–301 .

Montrym, J.and H. Moreton [2005].“The GeForce 6800,”IEEE Micro,Vol.25, no. 2 (March–April), 41–51.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits,” Electronics, Vol. 38, no. 8
(April 19).

http://doi.acm.org/10.1145/
http://www.graphicshardware.org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt
http://developer.nvidia.com/object/gpu_gems_home.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://www.openexr.com/
http://www.opengl.org/
http://msdn.microsoft.com/directx/

A.11 Historical Perspective and Further Reading A.11-7

Nguyen, H., ed. [2008]. GPU Gems 3,Addison-Wesley,Reading, MA.

Nickolls, J., I. Buck, M. Garland, and K. Skadron [2008]. “Scalable Parallel Programming with CUDA,” ACM
Queue,Vol.6, no. 2 (March–April) 40–53.

NVIDIA [2007]. CUDA Zone. www.nvidia.com/CUDA.

NVIDIA [2007]. CUDA Programming Guide 1.1. http://developer.download.nvidia.com/compute/cuda/1_1/
NVIDIA_CUDA_Programming_Guide_1.1.pdf.

NVIDIA [2007]. PTX: Parallel Thread Execution ISA version 1.1. www.nvidia.com/object/io_1195170102263.
html.

Nyland, L., M. Harris, and J. Prins [2007]. “Fast N-Body Simulation with CUDA.” In GPU Gems 3,
H. Nguyen (Ed.), Addison-Wesley,Reading, MA.

Oberman, S. F. and M. Y. Siu [2005]. “A High-Performance Area-Efficient Multifunction Interpolator,” Proc.
Seventeenth IEEESymp. Computer Arithmetic, 272–79.

Patterson, D. A. and J. L. Hennessy [2004]. Computer Organization and Design: The Hardware/Software
Interface, third edition, Morgan Kaufmann Publishers, San Francisco.

Pharr, M. ed. [2005]. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation,Addison-Wesley,Reading, MA.

Satish, N., M. Harris, and M. Garland [2008]. “Designing Efficient Sorting Algorithms for Manycore GPUs,”
NVIDIA Technical ReportNVR-2008-001.

Segal, M. and K. Akeley [2006]. The OpenGL Graphics System: A Specification, Version 2.1, Dec. 1, 2006.
www.opengl.org/documentation/specs/.

Sengupta, S., M. Harris, Y.Zhang, and J. D. Owens [2007]. “Scan Primitives for GPU Computing.” In Proc. of
Graphics Hardware 2007 (August), 97–106.

Volkov, V. and J. Demmel [2008]. “LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs,”
Technical Report No. UCB/EECS-2008-49, 1–11. www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
49.html.

Williams, S., L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel [2007]. “Optimization of sparse matrix-
vector multiplication on emerging multicore platforms,” In Proc. Supercomputing 2007,November.

http://www.nvidia.com/CUDA
http://developer.download.nvidia.com/compute/cuda/1_1/
http://www.nvidia.com/object/io_1195170102263
http://www.opengl.org/documentation/specs/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

