Purdue University standardized lecture notes established by a committee for the course when I was a Assistant Professor at Purdue: #### **POWER QUALITY** Customer expects: "Clean" sine voltage waveform with no outages Reality: Studies have shown a typical installation can expect over 70 power disturbances per year Customer's own equipment may cause problems within and external to the plant E.g., Switched mode power supplies # Categories of Power Quality Problems Voltage variations and interruptions Transients temporary effect Harmonics steady-state problem DELIVER POWER IM "GULPS" Wiring/grounding problems ### REVIEW NOTES FOR THE EIT EXAM These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon TABLE 1* Through and Across-Variables for Physical Systems | System | Through-variable f | Integrated through-
variable h | Across-variable v | Integrated across-
variable x | |------------------------------|--------------------|-----------------------------------|--|--| | Mechanical-
translational | Force F | Translational momentum p | Velocity
difference v21 | Displacement
difference x21 | | Mechanical-
rotational | Torque T | Angular
momentum /r | Angular velocity
difference Ω ₂₁ | Angular displacement
difference ⊕21 | | Electrical | Current i | Charge q | Voltage
difference v21 | Flux linkage λ ₂₁ | | Fluid | Fluid flow Q | Volume ν | Pressure
difference P ₂₁ | Pressure-
momentum Γ ₂₁ | | Thermal | Heat flow q | Heat energy 3C | Temperature difference θ_{21} | Not used in general | *Reference 4 (Table 4-1, p. 82) $$P = POWER$$ $R = RESISTANCE$ $V = iR$ $P = i^2R = iV$ # **REVIEW NOTES FOR THE EIT EXAM** These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon A classification of relations for simple physical system models | | 1 | | | | |--|---|--|--|---| | CLASSIFICATION | PHYSICAL MEDIUM | | | | | | Electrical | Mechanical | Heat conduction | Fluid | | (1) Variables Across variable | Current i Voltage drop v Note: arrow indicates direction of voltage drop. | Force f (Moment M) Velocity u (Angular velocity Ω) | Heat-flow rate q | Flow rate w Pressure p or Liquid height | | (2) Equilibrium relations
(among through variables) | KCL: $\Sigma i_{net} = 0$ | Force equilibrium
(Newton's law,
à la D'Alembert)
$\Sigma f^* = 0$
$\Sigma M^* = 0$ | First Law of Thermo-
dynamics $C \frac{dT}{dt} = q_{\text{metin}}, \text{no work},$ no phase change | Continuity $w_{\text{met in}} = \frac{dm}{dt}$
Force equilibrium
$\Sigma f^* = 0$ | | Compatibility rela-
tions 'among across vari-
ables: | KVL: $\Sigma_{\Gamma_{hop}} = 0$ | $\sum u_{loop} = 0$ $\sum \Omega_{loop} = 0$ | $\Sigma T_{loop} = 0$ | $\Sigma p_{leep} = 0$ | | Passive energy- | Inductor L i l i i i i i i | Spring Spring $M_{\text{opt}} = k\xi$ $M_{\text{opt}} = kfu dt$ $M_{\text{opt}} = k\psi$ $M_{\text{opt}} = kf\Omega dt$ | | | | storage "A-type" (storage via an across variable) | Capacitor $i = C\hat{v}$ | $\begin{array}{cccc} & & & & \text{Mass} \\ & & & & & \\ & & \uparrow^{u} & M_{i} & & f_{i} = m\dot{u} \\ & & & & \\ & & & \uparrow^{u} & M_{i} = J\dot{\Omega} \end{array}$ | $C = \frac{\prod_{i=1}^{q_{\text{net}}} q_{\text{net}} = C\dot{T}}{(\text{derived from the First Law})}$ | Gas storage $w = Cp$ $w = Ch$ Liquid storage | *Reference 1 p. 131 These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon REVIEW NOTES FOR THE EIT EXAM TABLE II (Continued) | | | | IXBLE II (Continued) | | | |--|---|--|--|---|---| | CLASSIFICATION | | PHYSICAL MEDIUM | | | | | | | Electrical | Mechanical | Heat conduction | Fluid | | (3) Constitutions (constitutions (constitutions (constitutions)) Passive energy-dissipation element | ion | Resistor $i = \frac{1}{R} v$ | Damper $ \int_{M_{\text{ext}}}^{f_{\text{ext}}} \int_{M_{\text{ext}}}^{f_{\text{ext}}} \int_{M_{\text{ext}}}^{D_{\text{amper}}} \int_{M_{\text{ext}}}^{M_{f}} \int_{M_{\text{ext}}}^{D_{\text{amper}}} \int_{M_{\text{ext}}}^{M_{f}} \int_{M_{ext$ | Heat resistance $R = \frac{T_1 \mid q}{T_1 \mid q} = \frac{1}{R} (T_1 - T_2)$ | Fluid resistance $w = \frac{1}{R} (p_1 - p_2)^{1/\alpha}$ | | Sources | "T-type"
(Constraining
a through
variable) | i = i(t) prescribed Current source | f = f(t) prescribed
Force source | q = q(t) prescribed Heat-flow source | w = w(t) prescribed Mass-flow source | | "A-tyr
(Const
an aero | "A-type"
(Constraining
an across
variable) | ν = ν(t) prescribed
Voltage
source | u = u(t) prescribed Velocity source | T = T(t) prescribed Temperature source | p = p(t) prescribed Pressure source | | Isolators | | $ \begin{array}{c c} \hline \vdots \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array} $ $v_2 = Kv_1$ (independent of load) Amplifier | | | y = cz (independent of load) Hydraulic integrating amplifier | TABLE II (Continued) | CI LEGISTA TOV | PHYSICAL MEDIUM | | | | |----------------------------|---|---------------------------|--|--| | CLASSIFICATION | Electrical-electrical | Electrical-mechanical | Mechanical-mechanical | | | Energy-conversion elements | $v_2 = Nv_1$ $i_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}v_1$ $v_3 = \frac{1}{N}v_4$ $v_4 = \frac{1}{N}v_4$ $v_5 = \frac{1}{N}v_5$ $v_7 = \frac{1}{N}v_1$ $v_8 = \frac{1}{N}v_1$ $v_9 | M = Ki Motor or generator | Ω_1 $\Omega_2 = \frac{1}{N} \Omega_1$ $M_2 = NM_1$ (N is the ratio of radii: $N \triangle \frac{r_2}{r_1}$) Gear train | | Purdue University standardized lecture notes established by a committee for the course when I was an Assistant Professor at Purdue: EXAMPLE CAUSES: 1) initial energizing of power factor correction capacitors 2) switching on transmission lines time (meac) 15 Purdue University standardized lecture notes established by a committee for the course when I was an Assistant Professor at Purdue: Purdue University standardized lecture notes established by a committee for the course when I was a Assistant Professor at Purdue: Fourier Components of current or voltage WHERE $$f_{harmonic} = n f_{powersystem}$$; $n = 1, 2, 3, ...$ Where do harmonics come from? Nonlinear loads! ### Curve from the Information Technology Industry (IIT) counsel standards: