

Purdue University standardized lecture notes established by a committee for the course when I was a Assistant Professor at Purdue:

POWER QUALITY

Customer expects: "Clean" sine voltage waveform with no outages

Reality: Studies have shown a typical installation can expect over 70 power disturbances per year

Customer's own equipment may cause problems within and external to the plant

E.g., Switched mode power supplies

Categories of Power Quality Problems

Voltage variations and interruptions Transients temporary effect

Harmonics steady-state problem

DELIVER POWER

IM "GULPS"

Wiring/grounding problems

REVIEW NOTES FOR THE EIT EXAM

These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon

TABLE 1*
Through and Across-Variables for Physical Systems

System	Through-variable f	Integrated through- variable h	Across-variable v	Integrated across- variable x
Mechanical- translational	Force F	Translational momentum p	Velocity difference v21	Displacement difference x21
Mechanical- rotational	Torque T	Angular momentum /r	Angular velocity difference Ω ₂₁	Angular displacement difference ⊕21
Electrical	Current i	Charge q	Voltage difference v21	Flux linkage λ ₂₁
Fluid	Fluid flow Q	Volume ν	Pressure difference P ₂₁	Pressure- momentum Γ ₂₁
Thermal	Heat flow q	Heat energy 3C	Temperature difference θ_{21}	Not used in general

*Reference 4 (Table 4-1, p. 82)

$$P = POWER$$
 $R = RESISTANCE$
 $V = iR$
 $P = i^2R = iV$

REVIEW NOTES FOR THE EIT EXAM

These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon

A classification of relations for simple physical system models

	1			
CLASSIFICATION	PHYSICAL MEDIUM			
	Electrical	Mechanical	Heat conduction	Fluid
(1) Variables Across variable	Current i Voltage drop v Note: arrow indicates direction of voltage drop.	Force f (Moment M) Velocity u (Angular velocity Ω)	Heat-flow rate q	Flow rate w Pressure p or Liquid height
(2) Equilibrium relations (among through variables)	KCL: $\Sigma i_{net} = 0$	Force equilibrium (Newton's law, à la D'Alembert) $\Sigma f^* = 0$ $\Sigma M^* = 0$	First Law of Thermo- dynamics $C \frac{dT}{dt} = q_{\text{metin}}, \text{no work},$ no phase change	Continuity $w_{\text{met in}} = \frac{dm}{dt}$ Force equilibrium $\Sigma f^* = 0$
Compatibility rela- tions 'among across vari- ables:	KVL: $\Sigma_{\Gamma_{hop}} = 0$	$\sum u_{loop} = 0$ $\sum \Omega_{loop} = 0$	$\Sigma T_{loop} = 0$	$\Sigma p_{leep} = 0$
Passive energy-	Inductor L i l i i i i i i	Spring Spring $M_{\text{opt}} = k\xi$ $M_{\text{opt}} = kfu dt$ $M_{\text{opt}} = k\psi$ $M_{\text{opt}} = kf\Omega dt$		
storage "A-type" (storage via an across variable)	Capacitor $i = C\hat{v}$	$\begin{array}{cccc} & & & & \text{Mass} \\ & & & & & \\ & & \uparrow^{u} & M_{i} & & f_{i} = m\dot{u} \\ & & & & \\ & & & \uparrow^{u} & M_{i} = J\dot{\Omega} \end{array}$	$C = \frac{\prod_{i=1}^{q_{\text{net}}} q_{\text{net}} = C\dot{T}}{(\text{derived from the First Law})}$	Gas storage $w = Cp$ $w = Ch$ Liquid storage

*Reference 1 p. 131

These are my review notes that I purchased for studying for the engineering licensing fundamentals exam that I passed in 1983; an all day exam which was closed book in the morning and open book in the afternoon

REVIEW NOTES FOR THE EIT EXAM

TABLE II (Continued)

			IXBLE II (Continued)		
CLASSIFICATION		PHYSICAL MEDIUM			
		Electrical	Mechanical	Heat conduction	Fluid
(3) Constitutions (constitutions (constitutions (constitutions)) Passive energy-dissipation element	ion	Resistor $i = \frac{1}{R} v$	Damper $ \int_{M_{\text{ext}}}^{f_{\text{ext}}} \int_{M_{\text{ext}}}^{f_{\text{ext}}} \int_{M_{\text{ext}}}^{D_{\text{amper}}} \int_{M_{\text{ext}}}^{M_{f}} \int_{M_{\text{ext}}}^{D_{\text{amper}}} \int_{M_{\text{ext}}}^{M_{f}} \int_{M_{ext$	Heat resistance $R = \frac{T_1 \mid q}{T_1 \mid q} = \frac{1}{R} (T_1 - T_2)$	Fluid resistance $w = \frac{1}{R} (p_1 - p_2)^{1/\alpha}$
Sources	"T-type" (Constraining a through variable)	i = i(t) prescribed Current source	f = f(t) prescribed Force source	q = q(t) prescribed Heat-flow source	w = w(t) prescribed Mass-flow source
"A-tyr (Const an aero	"A-type" (Constraining an across variable)	ν = ν(t) prescribed Voltage source	u = u(t) prescribed Velocity source	T = T(t) prescribed Temperature source	p = p(t) prescribed Pressure source
Isolators		$ \begin{array}{c c} \hline \vdots \\ \hline \vdots \\ \hline \vdots \\ \hline \end{array} $ $v_2 = Kv_1$ (independent of load) Amplifier			y = cz (independent of load) Hydraulic integrating amplifier

TABLE II (Continued)

CI LEGISTA TOV	PHYSICAL MEDIUM			
CLASSIFICATION	Electrical-electrical	Electrical-mechanical	Mechanical-mechanical	
Energy-conversion elements	$v_2 = Nv_1$ $i_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}i_1$ $v_2 = \frac{1}{N}v_1$ $v_3 = \frac{1}{N}v_4$ $v_4 = \frac{1}{N}v_4$ $v_5 = \frac{1}{N}v_5$ $v_7 = \frac{1}{N}v_1$ $v_8 = \frac{1}{N}v_1$ $v_9 = \frac{1}{N}v_1$	M = Ki Motor or generator	Ω_1 $\Omega_2 = \frac{1}{N} \Omega_1$ $M_2 = NM_1$ (N is the ratio of radii: $N \triangle \frac{r_2}{r_1}$) Gear train	

Purdue University standardized lecture notes established by a committee for the course when I was an Assistant Professor at Purdue:

EXAMPLE CAUSES: 1) initial energizing of power factor correction capacitors 2) switching on transmission lines

time (meac)

15

Purdue University standardized lecture notes established by a committee for the course when I was an Assistant Professor at Purdue:

Purdue University standardized lecture notes established by a committee for the course when I was a Assistant Professor at Purdue:

Fourier Components of current or voltage

WHERE
$$f_{harmonic} = n f_{powersystem}$$
; $n = 1, 2, 3, ...$

Where do harmonics come from? Nonlinear loads!

Curve from the Information Technology Industry (IIT) counsel standards:

