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Defining the Limits of Machine Intelligence (updated in 2003 and 2013)

Joseph T. Wunderlich, Ph.D.  
Elizabethtown College

Abstract - Machine Intelligence can be defined as encompassing
all of the developments in both symbolic artificial intelligence and
artificial neural networks. Traditional symbolic AI uses
programmed heuristics and forms of knowledge representation to
produce results in a seemingly more intelligent way than typical
computer programs. Artificial neural networks are a form of
connectionist computer architecture where many simple
computational nodes are connected in an architecture similar to
that of biological brains for the purpose of solving problems
which require rapid adaptation or solutions where underlying
governing equations are not known or cannot be easily
computed. This paper explores the limits of machine intelligence
by comparing the potential of these man-made systems to the
“mental ability” of two common biological life forms; namely
humans and bugs. The discussion begins with a study of basic
animal abilities such as adaptation, self-preservation, motor-
coordination, and processing complex sensory information. More
advanced abilities are then explored including tool-manipulation,
creativity, emotions, group psychology, and autonomy.

I. Introduction
The following discussion is organized around five simple
questions:

1) What can a human do?
2) What can a bug do?
3) What can a conventional computer program do?
4) What can a symbolic AI program do?
5) What can an artificial neural network do?

The human in question is one of average mental ability and
the “bug” is one with simple predatory and self-protection
capabilities (e.g., a spider). The “conventional computer
program” is assumed to be running on a typical uni-
processor von Neumann type architecture machine. The last
two questions assess the limits of machine intelligence.
Traditional “symbolic” Artificial Intelligence (AI) programs
use heuristics, inference, hypothesis testing, and forms of
knowledge representation to solve problems. This includes
“Expert Systems” and programming languages such as
PROLOG and LISP, with the knowledge contained in the
logic, algorithms, and data structures [2]. An artificial neural
network is a form of connectionist computer architecture
(hardware or software) where many simple computational
nodes are connected in an architecture similar to that of a
biological brain. The typical network is trained (i.e., learns)
by changing the strength (weight) of inter-neuron
connections such that multiple input/desired-output pairs are
satisfied simultaneously; the final set of network weights
represents the compromises made to satisfy multiple
constraints simultaneously [1 to 5].

II. Discussion
An attempt to answer the five simple questions above is
made for 20 different “basic animal abilities” and 22

“complex abilities.” Each of the 42 is grouped by abilities
which are often related.
(1) Acquire and retain knowledge, and (2) Solve problems: These
are often assessed for humans by standardized tests such as
the SAT exam for college entrance. Although the “verbal”
and “quantitative” section of the SAT would likely be
incomprehensible to a spider, a spider can solve simple
problems such as where to place its web. It also needs
knowledge of its environment and prey. All man-made
computational devices, intelligent or not, can solve problems
and retain knowledge; they only differ in memory capacity,
method of storage, method of solving, and class of solvable
problems.

(3)Learn and adapt:Both humans and spiders can easily learn
and adapt to new environments and stimuli, and do so in
both real-time and evolutionary time. Conventional
computers have great difficulty with this. A human
programmer is almost always needed to modify the
programs. Traditional symbolic AI is somewhat adaptable to
new input, however artificial neural networks are much
better at this -- with an ability to generalize when presented
new inputs. They can also learn very quickly when
embedded in hardware [6, 7].

(4)Motor coordination, (5) Acquire energy, (6) Protect self:
These have been referred to as “Mobility”, “Acquisition”,
and “Protection” [8] and are essential for the survival of
most animals. These have been somewhat implemented by
conventional and intelligent machines (e.g., robotic motor
control, power supplies, firewalls).

(7) Sensory processing, (8) Real-time thought, (9) React
instinctively, (10) Anticipate, (11) Predict: Most animals sense
their surroundings and think quickly and often instinctually
what to do. They therefore can anticipate outcomes. They
can also predict by extrapolating known information. With
the exception of instinct, conventional and intelligent
machines can also do these things; however neural networks
outperform symbolic AI when dealing with new stimuli and
can be much faster (especially if embedded in hardware
[6,7] ).

(12)Communication: Animals, conventional computers, and
intelligent machines all communicate. However nothing
comes close to what humans can do with natural language
processing. Traditional symbolic AI has been attempted this
for decades, however neural networks have had more recent
success in speech recognition including the difficult
understanding of “context”[1 to 5].

(13)Generalize: Generalize is “to derive or induce a general
principle or concept from particulars”[9]. Animals do this well.
Conventional computers don’t; they give very specific
responses to very specific inputs. Symbolic AI can only do



this to the extent the program has been built with variations
to consider. Neural networks are very good at this; with the
ability to generalize such that outputs are produced which
“best fit” (i.e., classify) a set of inputs (even when they
differ from what the network was trained with).

(14) Associate, (15) Recognize patterns: All animals do this
well; however no animal surpasses the human’s ability to
associate concepts and memories. Conventional computers
do this in a very limited sense; they can associate by
correlating data and can recognize the simple encoded
patterns of bit-streams input by humans and other machines.
Symbolic AI programs do this better, but are still limited by
the fixed structure (i.e., the “state-space” is fixed regardless
of how efficiently it is searched). Neural networks are very
good at association – with an ability through generalization
to associate patterns such as never-seen hand-written
characters to recorded ASCII representations. Neural
networks are widely used for recognizing image and speech
patterns [1,4].

(16)Robust under partial failure: Evolution has insured that
animals can often continue to function when one or more
subsystems fail (including parts of the brain). Conventional
computers can’t do this to any significant degree; even a
simple one-bit error in program execution can sometimes
cause a system to “lock-up.” Symbolic AI programs running
on conventional computers (or even super-computers) are
also likely to not function when the underlying computer
system fails. Neural networks are very robust under partial
failure and have the ability to partially function when some
neurons or inter-neuron connections fail [1 to 5].

(17)Autonomous thought: Most animals are free to make their
own decisions. Conventional computers and symbolic AI
programs are not autonomous unless they the software
developer creates the code to run without any human
intervention or oversight. Neural networks, with their
ability to learn, generalize, deal with never-seen input, and  
think in a distributed fashion do have the potential to
become entirely autonomous. Therefore, all computer and
forms of machine intelligence can be given autonomy if the
humans so choose; but how tightly should we hold the
leash? [20, 21, 22, 25].

(18)Drive to reproduce: With the exception of programming
dictated by genes (including the drive to reproduce), many
animals, and humans, are free to make their own decisions
including suppressing the urge to reproduce. All machines
are nowhere close to wanting to reproduce (unless someone
programs this). But it’s not beyond the realm of possibility
that someday far in the future intelligent machines could
decide to reproduce.

(19)Stability, Repeatability, Predictability: There is a definite
degree of uncertainty associated with all animal behavior.
“physics has managed to incorporate uncertainty into its
prospectuses, and there is no reason to believe that the scientific

study of behavior can not successfully incorporate a
"biobehavioral uncertainty principle" as well…..Intrinsic
variability not only removes the spectra of absolute predictability,
but may provide a basis for admitting more fully into scientific
discourse the concept of free will…. behavior is fundamentally
exploratory” [10]. Conventional computers and symbolic AI
don’t have this problem (or virtue). They simply respond in
a pre-programmed way. Neural networks however can
produce unexpected results; especially when dealing with
never-seen input.

(20) Multitask: The evolution of most biological life has led
to brains with multiple subsystems working in a coordinated
fashion; some performing basic system regulation (e.g.,
pulmonary, respiratory, temperature, and motor control),
some pre-processing information before relaying it to higher
reasoning centers (e.g., visual cortex), and some performing
higher  reasoning  [13]. Conventional computers are
becoming better at this, with subsystems performing tasks
simultaneous to the functioning of the CPU (Central
Processing Unit). Examples are DMA (Direct Memory
Access), and graphics-board processors [11,12]. It’s
important to note that “multitasking” in computer industry
nomenclature often implies time-sliced use of the CPU and
not true simultaneous, parallel functionality. This is one
reason to be careful when comparing human performance
with typical uni-processor computer performance. When
discussing brain performance, one must consider the brain’s
high degree of parallelism and pre-processing. Multitasking
is typically only found in symbolic AI programs when
written for multi-processor machines. Multitasking is
however a significant part of artificial neural network
learning. Recent research shows that humans immersed in
technology reach a limit where multitasking adversely
effects other mental abilities [24].

(21) Abstraction, (22) Intuition, (23) Common sense:Abstract is:
“having only intrinsic form with little or no attempt at pictorial
representation or narrative content” [9]. Intuition is: “Knowing
without conscious reasoning” [9]. Combining these definitions
can yield insight into the more complex workings of the
human brain (i.e., partially defined or disconnected thoughts
could lead to higher reasoning). Conventional computers
and symbolic AI programs simply respond in a pre-
programmed way. The ability of neural networks to learn by
repeatedly modifying inter-neuron connection weights until
a compromise is reached could be a form of abstraction.
Common sense is: “Sound and prudent but often unsophisticated
judgment” [9]. Some very analytical people are sometimes
said to not have common sense; perhaps the need for logic
and “sophisticated judgment” to prove hypotheses may
hinder the ability to temporarily think in a disconnected
fashion – even if an abstract, intuitive, and somewhat
unsophisticated thought could lead to a common sense
answer. New research is showing that advances in
computing will soon yield machines that can exhibit these



qualities by drawing from the equivalent of multiple brain  
centers simultaneously [23].

(24)Manipulate tools: Although a spider can design and
construct elaborate webs, it is not likely to envision
extensions of its appendages (i.e., tools) to do so.
Manipulating tools is exclusive to more evolved animals and
arguably can be attributed to humans becoming bipedal;
allowing our front “feet” to become hands for manipulating
tools [14]. Conventional and intelligent computational
systems can also manipulate tools by creating signals to send
to actuators (e.g., motors, etc.), which in turn position and
orient tools. This is a definition of robotic-arm control. Not
only what a robotic arm holds, but the arm itself can be
considered a tool for the computer to realize manipulation of
the physical world around it.

(25)Heuristics, (26) Inference, (27) Hypotheses testing: Most
animals don’t consider every possible way to react to a
situation before acting (i.e., an exhaustive search); they
instead apply heuristics to more efficiently select an action.
They also recognize when one scenario infers another, and
can solve problems by testing multiple hypotheses to result
in one solution. Conventional computer programs only
somewhat do this. Symbolic AI programs (especially
“Expert Systems”) can do all of these things [2]. Most
neural networks however are not well suited for the step by
step process needed to apply heuristics or hypothesis test,
but can somewhat infer results for given input data
(including never-seen input).

(28) Self-discipline & Impulse control, (29) Ethical behavior:
Despite genetic, instinctual, programmed animal “drives,”
humans can override their programming to maintain a level
of self-restraint, and can even develop a set of rules (i.e.,
ethics and values) to maintain civilization. Bugs seem to act
purely instinctually and show no signs of ethical
imperatives. Conventional computer programs are incapable
of these things; however symbolic AI programs can
incorporate all of the rules (and therefore ethics and values)
of a given human. Also, you could train a neural network to
respond “ethically” to given situations.

(30) Selective awareness (filtering): Most animals have the
ability to focus on a task while ignoring distractions such as
extraneous noise or motion around them. They are also able
to find images semi-obscured by camouflage or clutter.
Conventional computer programs and symbolic AI programs
can achieve this through pre-processing of input data by
using signal and image processing techniques. Also, several
types of neural networks, with their ability to generalize and
deal with never-seen input, can perform very well when
given “fuzzy” input [1 to 5]. Recent research shows that
humans immersed in technology reach a limit where
multitasking adversely effects their ability to focus [24].

(31)Open to inspection: Despite many years of scientific
advances in understanding both the biological and
behavioral function of animals brains, tracing mental
thoughts is still less “exact” then tracing the execution of a
conventional or symbolic-AI program. Neural networks are
less open to inspection than programs because of the many
compromises made in changing inter-neuron weight values
during the training (learning) phase (i.e., to satisfy many
input/desired-output pairs simultaneously).
(32) Emotions, (33) Imagination, (34) Creativity, (35) Passion,
(36)Playfulness: The ability to feel, to imagine and create, to
have passions and ambitions, and to experiment through
playful curiosity are still primarily human traits; and
although other animals may exhibit these abilities, it is
unclear what a spider can think in these regards. Play seems
to have also played an important role in evolution: “Given
that the adaptiveness of behavior itself derives from an
evolutionary process in which variability and play are absolutely
essential …..playfulness is indeed not only to be enjoyed but to be
accorded high value for its fundamental role in the success of all
organisms, including human” [10]. No man-made device is yet
capable of these things. New research is showing that
advances in computing will soon yield machines that can
exhibit these qualities by drawing from the equivalent of
multiple brain centers simultaneously [23].

(37)Empathy, (38) Courage, (39) Leadership: The ability to
empathize with the feelings of others, to take risks including
self-sacrifice for the benefit of others, and to display
leadership qualities (e.g., vision, compassion, motivation of
others), are still primarily human traits; and although other
animals may possess these mental abilities, it is unlikely a
spider does. No man-made device is yet capable of these
things. However, simple programmed responses to
perceived human emotion are now possible [15].

(40) Self-Awareness, (41) Awareness of mortality: It is unlikely
that a spider could recognize itself in the mirror or could
clearly recognize impending doom. However, humans can
see themselves, their lives, their influence on others, their
influence on the future, and their mortality. Conventional
computer programs can’t do these things. Also, it seems
unlikely (but not impossible) that intelligent machines could
ever become self-aware. However, it is very likely they
could achieve immortality as long as there is an ample
supply of replacement parts.
(42) Group Psychology, Social Networking, and Living in the
Cloud(s): Humans can play, work, raise children, and wage
war as teams. They can also collectively share beliefs.
Although some bugs work in a collective (e.g., ants, bees,
etc.), most spiders appear to be isolated thinkers. Networked
conventional computer programs and Intelligent machines,
especially if implemented with parallel processing
architectures, have the potential to implement the equivalent
of group psychology, and new research in Social
Networking and Crowd Sourcing shows that humans can



collectively achieve as teams of virtual avatars in semi-
realistic simulated worlds [26].

III. Intelligent Machine Platforms and Devices

Typical predictions of when computer performance will
reach that of the human brain employ Moore’s Law to
extrapolate increases in computing speed or number of
transistors per chip:

Qnew = Qold * (2 ^ (n/1.5)) (1)
Where Qold is today’s computing speed (or chip density),  
and Qnew is the computing speed (or chip density) expected  
n years in the future (i.e., speed and chip density double  
every 18 months). Although this law remains valid to-date,  
it must eventually break down. If we look less than a  
hundred years into the future, assuming a present day Qold  
speed of 3Ghz and a chip density of 10 million transistor per  
chip, Moore’s Law predicts a Qnew that would require  
electricity to travel through a transistor faster than the speed  
of light and more transistors on a chip than the number of  
atoms that would fit in that volume. This type of prediction  
can also be misleading if one doesn’t consider the relative  
degree of parallel processing that occurs in many biological  
and man made intelligence systems. A significant problem  
to solve is multitasking manmade subsystems as efficiently  
and elegantly as the human brain. To explore the limits of  
multitasking in machine intelligence, combine the  
understanding of mental abilities as discussed above (and  
summarized in Table 1.) with an understanding of the  
“Levels of Computing” as defined in Table 2. The degree of  
parallelism (DOP) [11] needed to be comparable to a human  
brain is simply not found in PC’s, Workstations, or even  
mini-computers. Only in some supercomputers does the  
parallelism begin to become close to what might be  
required. Some embedded systems may however be able to  
achieve these goals by having many simple devices working  
independently [7]; however most embedded systems lack  
the computation power (and precision) of even the simplest  
PC [16]. They have the DOP but not the processing power.  
Multitasking is typically only found in symbolic AI  
programs when written for multi-processor machines.  
Multitasking is however a significant part of artificial neural  
networks where learning occurs between the many simple  
computational nodes. This can be compared to MPP  
(Massively Parallel Processing) supercomputers. If an MPP  
machine could be built with billions of nodes (like the  
human brain), instead of just thousands (to-date), it could  
possibly implement an artificial neural network to rival all  
of the functionality of the human brain.
Another hurdle to overcome for those hoping to build
intelligent machines that rival human brains is choosing an
architecture that is either:

1. structurally similar to, or
2. merely produces results in a similar fashion to

the human brain (i.e., “bottom-up” vs. “top-down” design).
Most artificial neural networks are top-down designs which

learn and can be trained to react to external stimuli such that
they mimic certain biological brain function. They learn by
repeatedly applying mathematics to change inter-neuron
connection strengths (weights) until the outputs converge to
desired tolerances [1,3,4]. The network is trained (i.e.,
learns) by changing the strength of connections such that
multiple input/desired-output pairs are satisfied
simultaneously; the final set of weights represents the
compromises made to simultaneously satisfy the constraints.
A major problem in implementing this is that these
computations require matrix and vector manipulations, but
are often run on von-Neumann type uni-processor machines
that have a “bottle-neck” forcing non-parallel computations.
SMP (Symmetric Multi-Processing) machines can improve
performance; however the best machines for these
calculations are MPP or vector-register supercomputers, or
embedded, application-specific, highly parallel systems –
especially those which can provide learning in real-time.
The all-digital vector-register neural network processor
(with on-chip learning) proposed by Wunderlich in [7] is
one example of this.
The “bottom-up” approach is to build a man-made system
which functions like a biological brain at the circuit-level.
The theory in [17] is to build artificial dendritic trees as RC
analog circuit elements (i.e., built with resistors and
capacitors) that produce signals close to those propagating
through the dendritic tree inter-neuron connections of the
human brain. Fig. 1 is a VLSI chip built by Wunderlich [18]
to implement this theory. It has 64 neurons built from
approximately 10,000 transistors on a 2mm x 2mm die.

Even though the semiconductor industry continues to find
ways to increase the number of transistors per unit area, the
chip-area required to include billions of neurons (like that of
the human brain) would need to be millions of times larger
than a typical chip. One reason for this is that our brains are
three-dimensional whereas integrated circuits are mostly
two-dimension (despite multiple levels of layerization).
Another problem is connecting all of these neurons since the
wire routing would be in mostly two dimensions. Even with
several layers of metallization (for wires), it would be
extremely difficult to connect billions of neurons (with each
requiring thousands of connections to other neurons).
Perhaps the most difficult problem to overcome with this
type of implementation is mimicking human learning where

inter-neuron connections are
not only strengthened or
weakened during learning,
but are often grown. Wires
on chips need to be fixed, or
at-best of variable resistance,
and considering the required
extensive connectivity
between billions of neurons,
would likely take many years  
to be realized.



Figure 1. Neural network chip by Wunderlich [18, 19].  
Table 1. Mental Ability Matrix

Can  
human  

do?

Can  
bug  
do?  

(spider)

Can   
Conventional  

Computer
Program  

do?

Can  
Symbolic  

AI
Program  

do?

Can  
Artificial  
Neural

Network  
do?

Comments

BASIC ANIMAL ABILITIES:
1 Acquire and retain knowledge yes yes yes yes yes
2 Solve problems yes yes yes yes yes
3 Learn and adapt yes yes no somewhat yes Evolution
4 Motor coordination yes yes somewhat somewhat somewhat Survival
5 Acquire energy yes yes somewhat somewhat somewhat Survival
6 Protect self yes yes somewhat somewhat somewhat Survival
7 Sensory processing yes yes yes yes yes
8 Real-time thought yes yes yes yes yes
9 React instinctively yes yes no not yet not yet
10 Anticipate yes yes yes yes yes
11 Predict yes yes yes yes yes
12 Communicate yes yes yes yes yes
13 Generalize yes yes no somewhat yes
14 Associate yes yes somewhat somewhat yes
15 Recognition patterns yes yes somewhat somewhat yes
16 Robust under partial failure yes yes no no yes
17 Autonomous thought yes yes if  

programmed
somewhat soon How tightly to  

hold the leash?
18 Drive to reproduce yes yes no not yet not yet
19 Stability, repeatability, predictability somewhat somewhat yes yes somewhat Uncertainty
20 Multitask to a point yes yes no yes

COMPLEX ABILITIES:
21 Abstraction yes unlikely no no somewhat
22 Intuition yes unlikely no not yet soon
23 Common sense yes yes no not yet soon
24 Manipulate tools yes no yes yes yes Evolution
25 Heuristics yes yes somewhat yes no
26 Inference yes yes somewhat yes somewhat
27 Hypothesis testing yes somewhat somewhat yes no
28 Self-discipline, impulse-control yes unlikely no somewhat no
29 Ethical behavior yes unlikely no somewhat somewhat If coded/trained
30 Selective awareness (filtering) to a point yes yes yes yes
31 Open to inspection somewhat somewhat yes yes somewhat
32 Emotions yes unlikely no not yet soon
33 Imagination yes unlikely no not yet soon
34 Creativity yes unlikely no not yet soon
35 Passion yes unlikely no not yet soon
36 Playfulness yes unlikely no not yet soon Evolution
37 Empathy yes unlikely no not yet soon
38 Courage yes unlikely no not yet soon
39 Leadership yes unlikely no not yet not yet
40 Self awareness yes unlikely no not yet not yet
41 Awareness of mortality yes unlikely immortal? Immortal? Immortal? Replaceable parts
42 Group psychology, Social  

Networking, and Living in the
Cloud(s)

yes unlikely somewhat somewhat somewhat Networking,  
Crowd-sourcing,
Socially-
networked design



IV. Conclusions

Machine Intelligence can be defined as encompassing all of
the developments in both symbolic artificial intelligence and
artificial neural networks. This paper explores the limits of
machine intelligence by comparing the potential of these
man-made systems to the “mental ability” of two common
biological life forms; namely humans and bugs; this also led
to a discussion of various machine platforms and devices for
implementing machine intelligence, and to the observation
that perhaps complex mental abilities like emotions and
creativity, which are now known to be processes that draw
on many parts of the brain [23], can be compared to the
Group psychology of Social Networking,, which in a macro way
mirrors the complex collaborative micro processes in the
brain for emotions and creativity. Designing over the
internet using crowd-sourcing and socially-networking is
discussed in [26] and shown in Figures 2.

Figure 2. 2012 Elizabethtown College Architectural crowd-
sourcing projects; and related 2013 key-note talk and paper
in Osaka, Japan [26].
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Table 2. Levels of Computing
LEVEL TYPICAL  

APPLICATION
CHARACTERISTICS HARDWARE

And  
DEVICES

OPERATING  
SYSTEMS

FOR MACHINE  
INTELLIGENCE?

Embedded Real-time control, automobiles,  
appliances, factory automation

Cheap, small, and often  
fast

Microcontroller: (Intel,  
Motorola, PIC’s)
Microprocessor: (Intel,  
Motorola, PowerPC)
ASIC: (Application
Specific IC’s)

None or custom Good for high-speed real-
time-learning neural
network applications.
Not usually used for  
symbolic AI programming

PC General-purpose “low-end  
computing”

Usually faster than  
embedded, but
otherwise relatively  
slow, < ~$5000

Microprocessor (Intel,  
Motorola, PowerPC)

Windows, DOS,  
MAC OS, B,
Linux

Acceptable for neural  
network simulations and
symbolic AI programming

PC Server
or

Workstation

LAN server for ~100 people,

3-D simulations, VLSI circuit  
design (e.g., “Cadance”)

Fast, ~$3000 to
~$20,000

Multiple microprocessors
(Intel, Motorola, PowerPC)  
Silicon Graphics , SUN or  
IBM RS6000 workstations

Windows NT,  
UNIX, AIX

Good for neural network  
simulations and symbolic  
AI programming

Mini-
Computer

LAN server for ~500 people Fast, ~$100,000 IBM AS400, Amdahl, HP,
Hitachi

UNIX, MVS,  
VMS, OS390

Good for neural network  
simulations and symbolic
AI programming

Super-
Computer

SMP: LAN, WAN, or Internet
server for 1000’s of people, Air  
traffic control, NYSE
MPP: Grand challenge  
applications, Chess
Vector: Matrix-intensive grand
challenge applications

Extremely fast,
~$1,000,000 to
~$10,000,000

SMP: IBM S/390,
MPP: IBM SP2 (e.g.,
“Deep Blue”),
Vector: CRAY

SMP: UNIX,
MVS, VMS, OS  
390
MPP: custom  
distributed OS
Vector: custom
vector OS

Very good for neural
network simulations and  
symbolic AI programming

JOSEPH T. WUNDERLICH
Dr. Wunderlich is an Associate Professor of Engineering at Elizabethtown
College. Previously, he worked for Purdue University as an Assistant
Professor and for IBM as a researcher and hardware development engineer.
Dr. Wunderlich received his Ph.D. in Electrical and Computer Engineering
from the University of Delaware, his Masters in Engineering
Science/Computer Design from The Pennsylvania State University, and his
BS in Engineering from the University of Texas at Austin. He has been
involved with Robotics and Machine Intelligence for over 22 years.


