e |

over it doesn’t matter if it ig getting gas. Rule 4 asks the user to check for gas in the fue]
tank before asking that the user open up the carburetor and look there, It is performing
the easier check first.

In addition to the ordering of a rule’s premises, the content of a rule itself may be
fundamentally heuristic in nature. In the automotive example, all the rules are heuristic;

consequently, the system may obtain erroncous results. For example, if the engine is get-

b=l
ting gas and turning over, the problem may be a bad distributor rather thap bad spark
Q \)) q) L\ plugs. In the next section. we examine this problem and some ways of dealing with it.
P \
}? PR - \

\i*”’“ {L » 8.3.1 Introduction

£ Until Section 8.2, our inference procedures followed the model presented with the predi-
| | gz cate calculus: from correct premises sound inference rules produce new, guaranteed
{ correct, conclusions. In expert systems,”we must often attempt to draw correct concly-
L sions from poorly formed and uncertain evidence using unsound inference rules.

;' ! This is not nMy in almost every aspect of our
E daily survival. We deliver correct medical treatment for ambiguous symptoms? we mine
. natural resources with little or no QMS before we start; we comprehend
| language statements that are often ambigtious or incomplete, and so on,

_ The'reasons for this ambiguity may be better understood by referring once again to
: our automotive expert system example. Consider rule 2:

i

i _ the engine does not turn over, and

the lights do not come on
then
the problem is battery or cables.

This rule is heuristic in nature; it is possible (although less likely) that the battery and
cables are fine but that the car simply has a bad starter motor and burned-our headlights.

implication:
if
the problem is battery or cables
then
the engine does not turn over, and
the lights do not come on,

Barring the supernatural, a car with a dead battery will not light its headlamps or turn the
starter motor.

308 PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

e ————

ay be

IQtha.
}/

spark
it.

-edi-
teed
clu-

our
1ine
end

ind
1s.

to
les
ue

e

This is an example of abductive reasoning. Formally, abduction states that from
P -> Qand Q it is possible to infer P,

Abduction is an unsound rule of inference, meaning that the conclusion is not
necessarily true for every interpretation in which the premises are true. For example, if
someone says “‘If it rains then I will not go running at 3:00”" and you do not see that per-
son on the track at 3:00, does it necessarily follow that it is raining? It is possible that the
individual decided not to go running because of an injury or that he needed to work late,
etc.

Although abduction is unsound, it is often essential to solving problems. The
‘“‘correct’’ version of the battery rule is not particularly useful in diagnosing car troubles
since its premise (bad battery) is our goal and its conclusions are the observable symp-
toms we must work with. Modus ponens cannot be applied and the rule must be used in
an abductive fashion. This is generally true of diagnostic (and other) expert systems.
Faults or diseases cause (imply) symptoms, not the other way around, but diagnosis must
work from the symptoms back to the cause.

Uncertainty results from the use of abductive inference as well as from attempts to
reason with missing or unreliable data. To get around this problem, we can attach some
measure of confidence to the conclusions. For example, although battery failure does not
always accompany the failure of a car’s lights and starters, it almost always does, and
confidence in this rule is justifiably high.

Note that there are problems that do not require certainty measures. When
configuring a computer, for instance, the components either go together or they do not.
The idea that *‘a particular disk drive and bus go together with certainty 0.75° does not
even make sense. Similarly, if MACSYMA is attempting to find the integral of a func-
tion. a confidence of **0.6”’ that a result is correct is not useful. These programs may be
either data driven (Digital’s XCON) or goal driven (MIT’s MACSYMA), but because
they do not require abductive rules of inference or do not deal with unreliable data they
do not require the use of confidence measures.

In this section we discuss several ways of managing the uncertainty that results
from heuristic rules: first, the Bayesian approach (8.3.2), and second, the Stanford cer-
tainty theory (8.3.3). Finally, we briefly consider Zadeh’s fuzzy set theory, the
Dempster/Shafer theory of evidential reasoning, and nonmonotonic reasoning.

8.32 Bayesian Probability Theory /

The Bayesian approach to uncertainty is based in formal probability theory and has
shown up in several areas of Al research, including pattern recognition and classification
problems. The PROSPECTOR expert system, built at Stanford and SRI International
and employed in mineral exploration (copper, molybdenum, and others), also uses a form
of the Bayesian statistical model.

Assuming random distribution of events, probability theory allows the calculation
of more complex ‘probabilities from previously known results. In simple probability cal-
culations we are able to conclude, for example, how cards might be distributed to a
number of players.

Suppose that I am one person of a four-person card game where all the cards are
equally distributed. If I do not have the queen of spades I can concluilemfﬁat each of the

N

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS

309

P

L @QTQ
Nz Q(PqQ‘

A
.wéé“w.
%
£
<,

i

ALY i

others players has it with probability 1/3. Similarly, I can conclude that each player has |

“the ace of hearts with probability 173 and that any one player has both cards at [/3 * 1/3— !
or 1/9. - T

“Th the mathematical theory of probability, individual probability instances are g

worked out by sampling and combinations of probabilities are worked out as above, }

I

[

i

using 1S

probability(A and B) = probability(A) * probability(B)

% given that A and B are independent events. ;
One of the most important resuits of probability theory is Bayes’s theorem. Bayes’s !
results provide a way of computing the probability of a hypothesis following from a par- !

ticular piece of evidence, given only the probabilities with Which the evidencs Tollows
from actual causes (ypotheses). 7
Bayes’s theorem states:

P(E | H)*P(H, |
olH) - —ELFI-P(H) |

3 (P(E [H)*P(HQ) Z< \(
I
3 |

Qv <
\ M
P(E|H;) is the probability of observing ewdence E when H; is true. \,"7
. st e—
;) QQ(J\V \Q\'\ é\,\ :\/C‘“L N is the number of possible hypotheses. 7 Q\
‘ @WVF\\T) \é?;\sf“‘] Suppose we desire to examine the geological evidence ome location to see if the
: i

& XN ™ location is suited to finding copper. We must know in advance the probability of finding Pk\f\ .

each of a set of minerals and the probability of certain evidence

hood that mpmsent using the evidence we collect at the location. This is
5\« the approach taken in the PROSPECTOR program, which has found commercially
\\' significant mineral deposits (Duda et al. 1979a) at several sites.
/\e\ Q'\ There are two major assumptions for the use of Bayes’s theorem: first that all the
N [,‘{@ \\statistical data on the relationships of the evidence with the various hypotheses are
QQ#V Q@ known; second, gn_g more difficuit to establi?h,‘tﬂ?f"iﬁ‘?\élationships between evidence
Q;Q\/ S and hypotheses, or P(E]H,), are independent. Actually, this assumption of indepen-
dence can be a quit;Fcky matter, especialmhen many assamptions of independence

Q
& 2 are needed to establish the validity of this approach across many rule applications. This’

)\\"/ QQQ(;;\Q 4 Nﬁ‘” represents the entire collected probabilities on the evidence given various hypothesis
<X

relationships in the denethinator of Bayes’s theorem. In general, and especially in areas

“ & like medicine, this assumption of independence cannot be justified.
A final problem, which makes keeping the statistics O the ‘“‘evidence given
(ﬁQ@ hypotheses™’ relationships virtually intractable, is the need to rebuild ail probability rela-
N tionships when any new relationship of hypothesis to evidence is discovered. In many
o active research areas (again, like medicine) this is happening continuously. Bayesian
&W‘Q{\V reasoning requires complete and up-to-date probabilities if its conclusions are to be

O
310 (f"“ /\QPRARTlIV/ REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

L h
SN

\

|
i
|
J
i
I

ang being présent when each & | |

- %8 & pefticular mineral 78 found. Then we can use Bayes's theorem to determing the erli-P (é\}'\tk‘)
h) d
5 i

1

g correct. In many domains, such extensive data collection and verification are not
.’

i

/3 possible.
o Where these assumptions are met, Bayesian approaches offer the benefit of a well-
35 are founded and statistically correct handling of uncertainty. Most expert system domains

that the human expert does not use the Bayesian model in successful problem solving. In
the next section we describe certainty theory, a heuristic approach to the management of

: uncertainty. el G i M
A Ww \ B MW
yzw TG gt e 00 e

|
i E do not meet these requirements and must rely on more heuristic approaches. It is also felt

i

{

I

Several early expert system projects (besides PROSPECTOR) attempted to adapt
Bayes’s theorem to their problem-solving needs. The independence assumptions, con-
tinuous updates of statistical data, and other problems mentioned in Section 8.3.2 gradu-
ally led these researchers to search for other measures of ‘‘confidence.’’ Probably the
most important alternative approach was used at Stanford in developing the MYCIN pro-
gram (Buchanan and Shortliff 1984). .

Certainty theory is based on a number of observations. The first is that In traditional
probability theory the sum of confidence for a relationship and_ cgnﬁdence against the iT
same relationship must add to 1. However, it is often the case that an expert might have
yhoonfidence 0. (say) that some relationship is true and have no feeling about T being

not true.
~ Another assumption that underpins certainty theory is that the knowledge content
of the rules is much 'more important than the algebra of confidences that holds the system
together. Confidence measures correspond to the informal evaluations that human
experts attach to their conclusions, e.g., ‘it is probably true’’ or “‘it is highly untikely.”

Certainty theory makes some simple assumptions for creating confidence measures
and has some equally simple rules for combining these confidences as the program

f
N‘/s’y moves toward its conclusion. The first assumption is to split ‘“‘confidence for’’ from
‘‘confidence against’’ a relationship:
? AN

Call MB(HIE) ‘he measure of belic \of a hypothesis H given evidence E.

i

Call MD(H|E) the measure ¢fidisbe Ei\%‘;}f of a hypothesis H given evidence E.

Now either:)
1>MB(HIE) > 0 while MD(H|E) =0, or
1> MD(H|E) > 0 while MB(H|E) = 0.

q(0 \,/? The two measures constrain each other in that a given piece of evidence is either for

ot against a particular hypothesis. This is an important difference between certainty
theory and probability theory. Once the link between measures of belief and disbe-
lief has been established, they may be tied together “again with the certainty factor
calculation:

ny A SFRIE) - MB(H | B) WD |2
an e | CFHIE) = MB(H| E) - MD(H))
be | As the certainty factor (CF) approaches 1 the evidence is stronger for a hypothesis; as

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 311

)
V. When jt g
S ! i Sonclusion if all the premi§es are
i Omplete CCrtaingy. If the Tunning Program hag Produced Pﬁz P2, and P3
ith CFs of 0.6, 0.4 and 0.2, respectively, then 7 and RD Y be addeq fo the ¢oj
IMII CFs 0.28 and 0.12, TeSpectively,
Here are the Calculatiopg for this eXampje-
CF(P‘I(.G) and pp 4)) = MiN(.5 4) =4
CF((.4) or P3() MAX(.4,.2) 4
The CF for R1is.7 in the rule, 5o R 18 added 1o the g4, of true facyg With the asg,
Ciated CF ofa7) () =,
The CF fo, 2is .3 the ruje

is the Present Certainty factor
oduc;s re

sult R (again) With

S‘;

1 the asso-

€ ass50-

' Or more
?b&bﬂj[y
€nt evj.
of ry les
" factor.
Y with

‘SiIiVe

Jative

- cwn/ym{/om
T pnd(| CFR) | JEF(R2

[X] is the absolute value of X.

Besides being easy to compute, these equations have other desirable properties.
First, the CFs that result from applying this rule are always between 1 and —1, as are the
other CFs. Second. the result of combining contradictory CFs is that they cancel each
other out, as would be desired. Finally, the combined CF measure is a monotoni-
cally increasing (decreasing) function in the manner one would expect for combining
evidence.

Certainty theory has been criticized as being excessively ad hoc. Although it is
defined in a formal algebra, the meaning of the certainty measures is not as rigorously
founded as in formal probability theory. However, certainty theory does not attempt to
produce an algebra for ‘‘correct’’ reasoning. Rather it is the **lubrication’” that lets the
expert system combine confidences as it moves along through the problem at hand. Its
measures are ad hoc in the same sense that a human expert’s confidence in his or her
results is approximate, heuristic, and informal. In Section 8.4, when MYCIN is con-
sidered, the CFs will be used in the heuristic search to give a priority for goals to be
attempted and a cutoff point when a goal need not be considered further. But even
though the CF is used to keep the program running and collecting information, the
power of the program is in the content of the rules themselves. This is the justification
for the weakness of the certainty algebra.

8.3.4

Because of the importance of uncertain reasoning to expert level problem solving and
the limitations of certainty theory, work continues in this important area. In concluding
this subsection, we mention briefly three other approaches to modeling uncertainty:
Zadeh’s fuzzy set theory, the Dempster/Shafer theory of evidence, and nonmonotonic
reasoning.

Zadeh’s main contention (Zadeh 1983) is that, although probability theory is
appropriate for measuring randomness of information, it is inappropriate for measuring
the meaning of information. Indeed, much of the confusion surrounding the use of
English words and phrases is related to lack of clarity (vagueness) rather than random-
ness. This is a crucial point for analyzing language structures and can also be important
in creating a measure of confidence in production rules. Zadeh proposes possibility
theory as a measure of vagueness, just as probability theory measures randomness.

Zadeh’s theory expresses lack of precision in a quantitative fashion by introducing a
set membership function that can take on real values between 0 and 1. This is the notion
of a fuzzy ser and can be described as follows: let S be a set and S a member of that set.
A fuzzy subset F of S is defined by a membership function mF(s) that measures the
“‘degree’” to which s belongs to F.

A standard example of the fuzzy set is for S to be the set of positive integers and F
to be the fuzzy subset of S called ‘‘small integers.”” Now various integer values can
have a ‘‘possibility”” distribution defining their ‘‘fuzzy membership’’ in the set of smalil
integers: mF(1) = 1, mF{(2) = 1, mF(3) = 0.9, mF(4)=0.8, ..., mF(50) = 0.001, etc. For

Other Approaches to Uncertainty

<

$o o,
M

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS

313

—————

the statement that positive integer X is a *‘small integer,”” mF creates a possibility distri-
bution across all the positive integers (S). '

Fuzzy set theory is not concerned with how these possibility distributions are
created, but rather with the rules for computing the combined possibilities over expres-
sions that each contain fuzzy variables. Thus it includes rules for combining possibility
measures for expressions containing fuzzy variables. The laws for the or, and, and not
of these expressions are similar to those just presented for certainty factors. In fact, the
approach at Stanford was modeled on some of the combination rules described by Zadeh
(Buchanan and Shortliffe 1984).

Dempster and Schafer approach the problem of measuring certainty by asking us to
make a fundamental distinction between uncertainty and ignorance. In probability
theory we are forced to express the extent of our knowledge about a belief X in a single
number P(X). The problem with this (say Dempster and Shafer) is that we simply can-
not always know the values of prior probabilities and thus any particular choice of P(X)
may not be justified.

The Dempster/Schafer approach recognizes the distinction between uncertainty and
ignorance by creating ‘‘belief functions.”” These belief functions satisfy axioms that are
weaker than those of probability theory. Thus probability theory is seen as a subclass of
belief functions, and the theory of evidence can reduce to probability theory when all the
probabilities are obtainable. Belief functions therefore allow us (o use our knowledge to
bound the assignment of probabilities to events without having to come up with exact
probabilities, when these may be unavailable.

Even though the Dempster/Shafer approach gives us methods of computing these
various belief parameters, their greater complexity adds to the computational cost as
well. Besides, any theory that has probability theory as a special case is plagued by the
assumptions that have made probability theory already quite difficult to use. Conclu-
sions using beliefs, even though they avoid commitment to a stronger (and often
unjustified) assignment of probability, produce conclusions that are necessarily weaker,
But, as the Dempster/Shafer model points out quite correctly, the stronger conclusion
may not be justified.

All of the methods we have examined can be criticized for using numeric
approaches to the handling of uncertain reasoning. It is unlikely that humans use any of
these techniques for reasoning with uncertainty, and many applications seem to require a
more qualitative approach to the problem. For example, numeric approaches do not sup-
port adequate explanations of the causes of uncertainty. If we ask human experts why
their conclusions are uncertain, they can answer in terms of the qualitative relationships
between features of the problem instance. In a numeric model of uncertainty, this infor-
mation is replaced by numeric measures. Similarly, numeric approaches do not address
the problem of changing data. What should the system do if a piece of uncertain infor-
mation is later found to be true or false?

Nonmonotonic reasoning addresses these problems directly. A nonmonotonic rea:
soning system handles uncertainty by making the most reasonable assumptions in light
of uncertain information. It proceeds with its reasoning as if these assumptions were
true. At a later time, it may find out that an assumption was erroneous, either through a
change in problem data or by discovering that the assumption led to an impossible con-

314

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

clusion. When this occurs, the system must change both the assumption and all of the
conclusions that depend on it.

Nonmonotonicity is an important feature of human problem solving and common-
sense reasoning. When we drive to work, for example, we make numerous assumptions
about the roads and traffic. If we find that one of these assumptions is violated, perhaps
by construction or an accident on our usual route, we change our plans and devise an
alternative route to work.

Nonmonotonic reasoning contrasts sharply with the inference strategies we have
discussed so far in the text. These strategies assume that axioms do not change and the
conclusions drawn from them remain true. They are called monotonic reasoning systems
because knowledge can only be added through the reasoning process. Since information
may also be retracted in a nonmonotonic reasoning system when something that was pre-
viously thought to be true is later shown to be false, it is important to record the
justification for all new knowledge. When an assumed fact is withdrawn, all conclusions
that depend on that fact must be reexamined and possibly withdrawn as well. This
record keeping is the task of #ruth maintenance systems (Doyle 1979; de Kleer 1986).

84 MYCIN: A Case Study

8.4.1 Introduction

Although our small automotive diagnostic example is useful in presenting some of the
concepts of expert system design, it is a toy system and ignores much of the complexity
encountered in building large knowledge-based programs. For this reason, we end this
chapter with a case study of an actual working expert system.

The MYCIN project was a cooperative venture by the Department of Computer Sci-
ence and the Medical School at Stanford University. The main work on the project was
done during the middle and late 1970s, and about 50 person-years were expended in the
effort. MYCIN was written in INTERLISP, a dialect of the LISP programming language.
One of the earliest expert systems to be proposed and designed, it has become an impor-
tant classic in the field. Indeed, it is often presented as the archetype for the rule-based
program, with many commercial systems (e.g., TI's Personal Consultant) essentially
duplicating the MYCIN approach. One of the main reasons for the influence of the
MYCIN program is the extensive documentation of the project by the Stanford research
teams (Buchanan and Shortliffe 1984).

MYCIN was designed to solve the problem of diagnosing and recommending treat-
ment for meningitis and bacteremia (blood infections). This particular domain was
chosen largely because the program architects wanted to explore the way in which
human experts reason with missing and incomplete information. Although there are
diagnostic tools that can unambiguously determine the identity of the infecting organ-
isms in a case of meningitis, these tools require on the order of 48 hours (chiefly to grow
a culture of the infecting organisms) to return a diagnosis. Meningitis patients, however,
are very sick, and some treatment must begin immediately. Because of this need, doc-
tors have developed considerable expertise, based on initial symptoms and test results,

CHAPTER 8/ RULE-BASED EXPERT SYSTEMS

for forming a diagnosis that covers (i.e., includes as a subset) the actual infecting or-
ganisms. Treatment begins with this diagnosis and is refined when more conclusive
information becomes available. Thus, the domain of meningitis diagnosis provided a
natural focus for studying how humans solve problems using incomplete or unreliable
information.

Another goal of the MYCIN design team was to pattern the behavior of the program
after the way in which human physicians interact in actual consultations. This was seen
as an important factor in system acceptability, particularly since medical consultations
tend to follow a standard set of protocols.

In the next subsections we examine the composition of the MYCIN rule and fact
descriptions, including the syntax of MYCIN rules. Next, we present a trace of a MYCIN
consultation, along with explanatory comments and a discussion of the design and struc-
ture of the dialogue. We then discuss the problem of evaluating expert systems and,
finally, demonstrate the use of an experimental knowledge base editor, Teiresias. Editors
such as Teiresias assist the domain experts (in this case the doctors) in correcting the
MYCIN knowledge base without the need for the computer language expert. Although
such tools are still mainly experimental, this is an important area of research and a
potential key to increasing the range of applicability of expert system technology.

84.2 Representation of Rules and Facts

Facts in MYCIN are represented as attribute-object-value triples. The first element of
this structure is an attribute of an object in the problem domain. For example, we may
wish to describe the identity of a disease Organism or its sensitivity to certain drugs. The
name of the object and the value of the attribute follow. Since information in this
domain may be uncertain, a certainty factor is associated with MYCIN facts. Recall
from Section 8.3.3 that this certainty factor will be between 1 and -1, with 1 being cer-
tain, -1 indicating certainty that the attribute is not true, and values about 0 indicating
that lirtle is known.
For example, MYCIN facts may be represented in English by:

There is evidence (.25) that the identity of the organism is Klebsiella.
and
It is known that the organism is not sensitive to penicillin.

These may be transiated into the LISP s-expressions:
-(ident organism_1 kiebsiella .25)
and
.('sensitive organism_1 penicillin -1.0)
We next present an example MYCIN rule both in English and in its LISP

equivalent. This sample rule is a condition-action pair in which the premise (condition)
is the conjunction of three facts (attribute-object-value triples) and the action adds a new

316

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

——————y

fact to the set of things known about the patient, the identity of a particular organism that
is added to the “‘cover set’” of possible infecting organisms. Because this is an abduc-
tive rule of inference (inferring the cause from the evidence), it has an attached certainty
factor.

In English:

if (a) the infection is primary-bacteremia, and

(b) the site of the culture is one of the sterile sites, and

(c) the suspected portal of entry is the gastrointestinal tract
then there is suggestive evidence (.7) that infection is bacteroid

is rendered for MYCIN:

IF: (AND (same_context infection primary_bacteremia)
(membf_context site sterilesite)
(same_context portal Gl))

THEN: (conclude context_ident bacteroid tally .7).

Syntactically, attribute-object-valve (A-O-V) triples are essentially a restriction of
predicate calculus expressions to binary predicates. This restriction is not particularly
limiting, since algorithms exist for translating predicates of any arity into a set of binary
predicates.

There is a deeper difference between predicate calculus and the A-O-V triples used
in MYCIN: predicates may be either true or false. Predicate calculus uses sound rules of
inference to determine the truth value of conclusions. In MYCIN, a fact has an attached
confidence rather than a truth value. When the system is deriving new facts, it fails 1o
fire any rule whose premise has a certainty value of less than 0.2. This contrasts with
logic, which causes a rule to fail if its premise is found to be false.

This comparison of attribute-object-value triples and predicate calculus expressions
is included here to emphasize both the similarities and the trade-offs involved in different
knowledge representations. At the highest conceptual level, the characteristics that
define a rule-based expert system are independent of any commitment to a particular
representational format. These characteristics have been discussed in the comparison of
rule-based expert systems and the production system model of problem solving. At the
level of an implementation, however, the selection of a particular representational for-
malism does involve a number of important trade-offs. These issues include the clarity of
the representation, expressiveness (what knowledge can the formalism effectively cap-
ture?), naturalness of expression, and ease of implementing and verifying the system.

The action of a MYCIN rule can perform a number of tasks once the rule is
satisfied. It may add new information about a particular patient to the working memory.
It may also write information to the terminal (or-other output device), change the value
of an attribute or its certainty measure, look up information in a table (where this
representation is more efficient), or execute any piece of LISP code.

Although the ability to execute arbitrary LISP code gives unlimited added power, it
should be used judiciously, since excessive use of escapes to the underlying language

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS

317

L~ =

can lose many of the benefits of the production system formalism. (As an absurd exam-
ple of this, imagine an Cxpert system with only one rule, whose action is to call a large
and poorly structured LISP program that attempts to solve the problem!)

MYCIN rule and fact descriptions, like all knowledge representations, are a formal
language and have a formal Syntactic definition. This formal syntax is essential to the
definition of well-behaved inference procedures. Furthermore, the formal syntax of rules
can help a knowledge base editor, such as Teiresias, determine when the domain expert
has produced an mcorrectly formed rule and prevent that rule from entering the
knowledge base. Teiresias can detect syntactic errors in a rule and, o an impressive
degree, automatically remedy the situation (see Section 8.4.5). This is possible only
when the entire program is built on a set of forma] specifications.

The syntax of MYCIN rules is given below. It is stated in BNF or Backus-Nayy
Jorm (Pratt 1984). BNF is a form of context-free grammar that is widely used to define
programming languages. In the notation, keywords in the language are written in upper-
case letters, These are terminals in the syntax. Nonterminals are enclosed in angle

to the left of the ;:= can be replaced with the expression on the right. If we begin with
the <rule> nonterminal, anything that can be produced through a series of legal substitu-
tions is a legal MYCIN rule.

<rule> ::= (IF <antecedent> THEN <action> [ELSE <action>))
<antecedent> ::= (AND {<condition>}+)

<condition> = (OR {<condition>}+ | <predicates <associative-triples)
<assaciative-triple> ::= (<attribute><object><value>)

<actions> = {<consequent>}+ | {<procedures}+

<consequents ;= (<associative-tripfe> <certainty-factors)
<cCertainty-factor> ranges from -1 (false) to +1 (true).

<predicates is any LISP predicate.

<procedure> is any piece of LISP code.

843 MYCIN Diagnosing an Illness

MYCIN is a goal-driven expert system. Its main action is to Iry to determine whether a
particular organism may be present in the meningitis infection in the patient. A possible
infecting organism forms a goal that is either confirmed or eliminated. Tt is interesting to
note that the decision to make MYCIN a goal-driven System was not based exclusively

structure and order of tules,

318

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

B o

In keeping with this goal of making the program behave like a doctor, MYCIN’s
designers noted that doctors ask routine questions at the beginning of a consultation
(e.g., “*how old are you?’’ and ‘‘have you had any childhood diseases?’’) and ask more
specific questions when they are needed. Collecting the general information at the
beginning makes the session seem more focused in that it is not continually interrupted
by trivial questions such as the name, age, sex, and race of the patient. Certain other
questions are asked at other well-defined stages of a consultation (such as when begin-
' ning to consider a new hypothesis).

Eventually the questions get more specific (questions 16 and 17 in the trace below)
and related to possible meningitis. When positive responses are given to these questions,
MYCIN determines that the infection is meningitis, goes into full goal-driven mode, and
tries to determine the actual infecting organisms. It does this by considering each infect-
ing organism that it knows about and attempting to eliminate or confirm each hypothesis
in turn. Since a patient may have more than one infecting organism, MYCIN searches
exhaustively, continuing until all possible hypotheses have been considered.

MYCIN controls its search in a number of ways that have not yet been discussed.
The knowledge base includes rules that restrict the hypotheses to be tested. For exam-
ple, MYCIN concludes that it should test for meningitis when the patient has had
headaches and other abnormal neurological signs.

Another feature of MYCIN’s inference engine is the order in which it tries the

" backward chaining rules. After determining the general category of the infection (men-
ingitis, bacteremia, etc.), each candidate diagnosis is examined exhaustively in a depth-
first fashion.

To make the search behave more intelligently, MYCIN first examines all the prem-
ises of a rule to determine if any of them are already known to be false. This prevents
the program from trying to solve several of the premises, only to discover that the rule
could have been eliminated immediately by one of the later premises.

MYCIN also attempts to find a unizy path. In irying to prove a goal, it looks for
rules that can conclude that goal with a certainty of 1. If one of these rules succeeds, the
system does not have to try other rules; the goal is known to be true. This increases both
the efficiency and rationality of the search procedure.

When the confidence measures for a rule premise get below a certain value, the
depth-first search is terminated. As mentioned above, the certainty measure for each
patient’s data is combined with the measures resident in the rules to give the certainty of
the new conclusions for the patient. When these get below 0.2, MYCIN abandons the
search and goes back up the graph to try another branch of the search space.

When the user wants MYCIN to justify its request for some information, he or she
"can ask why. Initially, this is answered by the phrase ‘‘because I need the information as
a necessary attribute of each patient.”” Once MYCIN begins its backward search for the
causes of the patient’s problems, however, the Why question is answered by printing the
rule that MYCIN is currently considering.

‘ As was also mertioned earlier in this chapter, the ‘‘Englishlike’” interaction that the
computer offers the user is not a fuil English language understanding program.
Appropriate forms for English language comments and questions are attached to each
rule when it is created so that the proper query can be presented to the user when infor-

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 319

mation is needed for use of the rule or so that a rule can be printed in response to a user
query.

The following dialogue is a simulated run of the MYCIN program adapted from
transcripts of actual MYCIN consultations. It Is not necessary to understand either the
medical terminology or the medjcal reasoning to appreciate MYCIN’s problem solving.

Our comments on the MYCIN trace are reproduced in italics throughout the interac-
tion. The MYCIN questions and answers are numbered, with the user’s responses in this

type.
@ mycin
MYCIN 26-March. . ..
Instructions? (YorN)
N
26-March 10:42
————— PATIENT-1-----
Mycin has created an object (PATIENT-1) in its dynamic knowledge base or

working memory. Certain artributes are immediately requested and are
necessary for every patient. These make up the first four questions. . ..

(1) Patient’s pame:
Alan Apt
(2) Age?
34
(3) Sex
Why
MYCIN restates the question before answering. .. .

[i.e., Why is it important to determine the sex of PATIENT-17]

[1.0] The sex of the patient is one of the four standard parameters that
identify a patient. This may be useful later. . ..

[back to question 3. . .
Male

(4) Race?

Caucasian

(5) Are there any cultures for Alan Apt that may be related to the present

illness, and from which organisms have been grown successfully in the lab?

No
Mycin is a program to analyze and treat infectious diseases, so before it gets
into close questioning of the patient’s present condition it asks about any
present or pending data (cultures) that are available. -

(6) Are there any pending cultures for Alan Apt?

Yes

----- CULTURE-1-----

320

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

) a user

d from
h/ef— the
N

nterac-
in this

Another object (CULTURE-1) is created and linked to PATIENT-1.. ..

(7) From what site was the specimen for CULTURE-] taken?
CSF

(8) Please give the date and time when the pending CSF culture was
obtained?

26-March-7:00
(9) Was a smear examined at the time the specimen was obtained?
Yes

(10) Were any cultures seen on the smear of the specimen?
No

Indentation indicates that MYCIN' s attention has returned from consideration
of the new object (CULTURE-1) back to the original object (PATIENT-1).

(11) Are there any other pending cultures?
No

(16) Has Alan Apt recently had symptoms of persistent headache or other
abnormal neurologic symptoms (dizziness, lethargy, etc.)?

Yes

(17) Has Alan Apt recently had objective evidence of abnormal neurologic
signs (nuchal rigidity, coma, seizures, etc.) documented by a physician?

Yes

With the answers of these last two questions in the affirmative, MYCIN
decides to consider meningitis infections and goes into a full back chaining
search to try to identify the organisms that might be causing the meningitis.

The CSF cultures will be considered to be associated with MENINGITIS.

(18) Please give the date on which clinical evidence (symptoms, signs, or
laboratory tests) of the meningitis first appeared.

25 March 10:00

(36) Has Alan Apt had neurosurgery?
Why

[i.e., WHY is it important to determine whether PATIENT-1 has had
neurosurgery?]

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 321

[6.0] This will aid in determining the organisms (other than those seen on
cultures or smears) that might be causing the infection.
It has already been established that
[6.1] the culture that requires therapy is meningitis, and
[6.2] organisms were not seen on the stain of the pending csf culture
(CULTURE-1), and
[6.3] the type of infection is bacterial
Therefore, if
[6.4] Alan Apt has had neurosurgery, and
[6.5] the time since the neurosurgical operation is less than two
months, and
[6.5] the type of neurosurgery is not ventricular-urethral-shunt
then
there is evidence that the organisms that might be causing the
infection are staphylococcus-coag-pos (.75), staphylococcus-coag-neg (.5)
e.coli (.4), klebsiella.
Author: Yu
[RULE511]
[back to question 36...]

How [6.3]

The physician is concerned how MYCIN arrived at the conclusion that the
infection is bacterial. MYCIN responds, after restating its interpretation

of the question the doctor is asking, with the rules it used to determine that
the infection was indeed bacterial. The answer to HOW is given as the rules
used, as well as their (positive and negative) certainty factors, for
determining this resul. . . .

[i.e., HOW was it established that the type of infection is bacteria]?]
The following rules concluded about: the likelihood that the type of infection

is bacterial
Rule Yes No
[6.77 500 (4
[6.81 501 (17

[6.91 502 (D)
[6.10] 524 (42)
[6.11] 504 (.28)

Thus it has been established that the type of infection might be bacterial, |
[back to question 36. . .] . - .
No ‘

322 PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

—

R (42) Is Alan Apt a burn patient?

Yes

[have found evidence (RULES07) that treatment should cover for
Diplococcus pneumoniae causing meningitis.

I have found evidence (RULES545) that treatment should cover for e.coli
causing meningitis

I have found evidence (RULES545 RULES78) that the treatment should cover
for Pseudomonas aeruginosa causing meningitis.

)

MYCIN now artempts to prescribe appropriate therapies for these infections.
First, it must be determined whether the patient has any allergies to
antibody therapies. The height and weight of the patient are also requested
to determine proper dosages . ..

(:5)
(43) Does Alan Apt have focal neurological signs?

No

[Determining which dosages are desirable for use against the e.coli...]
[Determining which drugs are desirable for use...]

INFECTION-1 is MENINGITIS

+ <ITEM-1> DIPLOCOCCUS-PNEUMONIAE (from clinical evidence only)
+ <ITEM-2> E.COLI (from clinical evidence only)

+ <ITEM-3>PSEUD.....

[REC-1] My preferred therapy recommendation is as follows:
In order to cover for items <1 2 3>:
. Give the following in combination:
. 1) AMPICILLIN
Dose: 3.85g (30.8ml) g4h IV
2) GENTAMICIN
Dose: 131mg (3.2ml) g8h IV
Comments: Monitor serum concentrations
Since high concentrations of penicillins can inactivate aminoglycosides,
do not mix these antibiotics in the same IV bottle.

Do you wish to see the next choice therapy?
No

If the physician did not like the recommended treatment he or she could
have asked for another, eliminating one of the drugs (ampicillin, for
instance). MYCIN would then have attempred to find another treatment. ...

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 323

8.44 Evaluation of Expert Systems

One of the difficult issues faced by expert system design teams is to determine when the
program is ready for actual use. This problem is all the more difficult when the program,
like MYCIN, deals with life-threatening situations; here, mistakes, such as overlooking
an infecting agent, can be catastrophic. Many expert systems, including MYCIN
{(Buchanan and Shortliffe 1984), have been evaluated by using a form of the Turing test.

Ten randomly selected case histories of meningitis were rediagnosed by MYCIN
and eight practitioners at the Stanford Medical School. These included five faculty
members, one research fellow in infectious diseases, one resident physician, and one
medical staudent. The actual therapy given by the original doctors on the case was also
included, for a total of ten diagnoses.

These ten diagnoses were evaluated by eight infectious-disease experts away from
Stanford. The diagnoses were ‘‘blind’’ in that they were uniformly coded so that the
experts did not know whether they were looking at the computer’s diagnosis or that of
the humans. The evaluators rated each diagnosis as acceptable or unacceptable, with a
practitioner being given one point for each acceptable rating. Thus, a perfect score
would be 80 points. The results of this evaluation are given in Table 8.1:

TABLE 8.1 EXPERTS EVALUATE MYCIN
AND NINE OTHER PRESCRIBERS

PRESCRIBER ~ SCORE PERCENT
MYCIN 55 69
Faculty-5 54 68
Fellow 53 66
Facuity-3 51 64
Faculty-2 49 61
Faculty-4 47 59
Actual RX 47 59
Faculty-1 45 56
Resident 39 49
Student 28 35

Table 8.2 presents the results of asking another important question in this ‘‘life and
death’” analysis: In how many cases did the recommended therapy fail to cover for a
treatable infection? The results in both tables indicate that MYCIN performed at least as
well as the Stanford experts. This is an exciting result, but it should not surprise us as
the MYCIN knowledge base represents the combined expertise of some of the best medi-
cal minds available. Finally, MYCIN gave fewer drugs than the human experts and thus
did not overprescribe for the infections. .. .

Another noteworthy aspect of this evaluation is how little agreement there was
among human experts concerning the correctness of diagnoses. Even the best of the
diagnosticians failed to receive a unanimous endorsement from the evaluators. This
observation underscores the extent to which human expertise is still largely heuristic in
nature.

324

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

:'——

-

nd
ra
as
as
di-
[us

/as
he
his

in

TABLE 8.2 NUMBER OF CASES IN WHICH
THERAPY MISSED A TREATABLE PATHOGEN

PRESCRIBER NUMBER
MYCIN 0

Faculty-5 i
Fellow 1
Faculty-3 1
Faculty-2 0
Faculty-4 0
Actual RX 0
Faculty-1 0
Resident 1
Student 3

Note: On the average MYCIN gave fewer drugs than the human experts.

These positive evaluation results do not mean that MYCIN is now ready to set up a
medical practice and take on patients. In fact, MYCIN is not used for delivering medical
care. There are several important reasons. First, and most important, the rules (approxi-
mately 600 of them) did not give a speedy response in the doctor-computer interaction.
Each session with the computer lasted about one-half hour and required, as can be seen
from the trace presented above, a good amount of typing: e

Second, the program was ‘“‘locked into’’ the particular part of its graph search for

response to questions. It was not able to extrapolate to other situations or previous
patients, but remained strictly within the nodes and links of the graph it was evaluating.

Third, MYCIN’s explanations were limited: when the doctor expected a deep medi-
cal justification for some particular result—a physiological or antibacterial justification,
say—MYCIN simply returned the ‘‘condition action plus certainty factor’’ relationship
contained in its rule base. It is difficult for an expert system to relate its heuristic
knowledge to any deeper understanding of the problem domain. MYCIN, for example,
does not really understand human physiology; it simply applies rules to case-specific
data. Folklore has it that an early version of MYCIN, before recommending a particular
drug, asked if the patient was pregnant, in spite of the fact that MYCIN had been told
that the patient was male! Whether this actually happened or not, it does indicate the
limitations of current expert system technology. Attempting to give expert systems the
flexibility and deeper understanding dernonstrated by human beings is an important and
open area of research.

Finally, unlike humans, who are extremely flexible in the way they apply knowl-
edge, expert systems do not ‘‘degrade gracefully’” when confronted with situations that
do not fit the knowledge in their rule base. That is, while a human can shift to reasoning
from first principles or to intelligent guesses when confronted with a new situation,
expert systems simply fail to get any answer at all.

All of these issues have meant that MYCIN does not enjoy common use in the med-
ical field. Nonetheless, it does serve as an archetype of this class of expert system and
many of its descendants, such as PUFF, are being used in clinical situations.

CHAPTER 8/ RULE-BASED EXPERT SYSTEMS

325

8.4.5 Knowledge Acquisition and the Teiresias Knowledge Base Editor

Another one of the long-term goals of expert systems research is to design software that
will allow the human expert to interact directly with the knowledge base to correct and
improve it. This is'seen as a potential remedy for what has been called the knowledge
engineering bottleneck. This bottleneck is caused by the fact that building an expert Sys-
tem generally requires a substantial commitment of time by both the domain expert and
the knowledge engineer. This contributes to the expense and complexity of building
expert systems. Both of these individuals tend to be highly paid professionals, and the
loss in productivity caused by taking the domain expert away from other work during
system development can add to the cost of the project. Additional cost and complexity
come from the effort needed to communicate the domain expert’s knowledge to the
knowledge engineer, the logistics of getting these two people together, and the complex-
ity of the programming required for an expert system.

The obvious solution to this problem is to automate as much of the process as possi-
ble. This has been done to a great extent through the development of expert system
shells and environments that reduce the amount of programming required by the
knowledge engineer. However, these shells still require that the programmer understand
the methodologies of knowledge representation and search. A more ambitious goal is to
eliminate the need for a knowledge engineer entirely. One way to accomplish this is to
provide knowledge base editors that allow the domain expert to develop the program,
interacting with the knowledge base in terms that come from the problem domain and
letting the software handle the details of representation and knowledge organization.
This approach has been explored in an experimental program called Teiresias (Davis
1982; Davis and Lenat 1982), a knowledge base editor developed at Stanford University
as part of the MYCIN project. We discuss the Teiresias project in this section.

Another approach to the problem is to develop programs that can learn on their own
by refining their problem-solving efforts in response to feedback from the outside. These
approaches have been explored with varying degrees of success by the machine learning
community. These issues are introduced in Chapter 15 and continue to be a promising
and exciting area of artificial intelligence research.

With the assistance of a knowledge base editor, the domain expert can analyze the
performance of a knowledge base, find missing or erroneous rules, and correct the prob-
lem in a language appropriate to the expert’s way of thinking about the domain. The
knowledge base editor designed for MYCIN is cailed Teiresias after the blind seer of the
Greek tragedian Euripides. The name is altogether appropriate, as Teiresias was able to
see and describe the relations of the world without the (literal) gift of sight; similarly,
this software is able to understand relations in a knowledge base without (literally)
understanding the referents of these relations.

Teiresias allows a doctor to step through MYCIN’s treatment of a patient and locate
problems- with its performance. Teiresias also translates the doctor’s corrections into the
appropriate internal representations for the knowledge base. Thus Teiresias is able to
maintain the syntactic consistency of the knowledge base by updating all appropriate
program structures when new information is to be integrated into the knowledge base.

For example, MYCIN stores considerable knowledge in the form of tables. Certain
rules include LISP code that retrieves information from these tables, such as characteris-

326

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

—A

litor - v - tics of disease organisms. This improves the efficiency of the knowledge base, since a
< single table can capture information that would require numerous rules to encode. How-
iré that ever, if a new object (for example, a disease organism) is added to the knowledge base,
act and then all tables that contain information about disease organisms must be updated to
w[g{[gg reflect this.
3\/ 3- Semantic consistency is a more difficult problem, requiring knowledge of how well
ert and the knowledge base actually reflects the problem domain. Although Teiresias cannot be
uilding said to truly maintain semantic consistency, it does make an effort to ensure that rules
ind the appear consistent with one another. It does this by maintaining rule models, or statistical
during profiles of all the rules. If a new rule is added to the knowledge base, Teiresias compares
plexity this new rule with the rule model for all existing rules that draw the same conclusion.
to the The assumption is that rules that draw similar conclusions should examine similar condi-
nplex- tions in their premises. This enables Teiresias to detect potential inconsistencies in a
new rule and prompt the user for corrections.
possi- To illustrate Teiresias, we analyze its interaction with the doctor after MYCIN has
system given its recommendations. The doctor disagrees with MYCIN’s result, and with
sy the Teiresias’s help, analyzes MYCIN’s solution. The trace is a simulation taken from a ses-
srstand sion by Stanford researchers, where the analysis is in italics, Teiresias’s questions are in
il is to regular type, and the doctor’s responses are in this type.
s is to When a conclusion is given with which the doctor disagrees, the rule that drew this
»gram, conclusion is not necessarily wrong. A number of things could have happened, as
in and Teiresias correctly shows: A fact of the rule could have been improperly concluded; the
ration. rule might, in fact, be wrong; or another rule might be missing from the knowledge base.
Davis Finding the cause of an error is a difficult problem that potentially requires examination
rersity of the entire line of reasoning. Teiresias assists the physician in determining the problem
by maintaining an and/or graph of the solution process and working systematically
ir own through this trace.
These All rules are translated into an English language syntax that assists the physician in
arning understanding the trace. Once a problem is located, Teiresias lets the user add the miss-
nising . ing rule in the same simplified syntax, translating the rule into an internal representation
and checking the new rule for consistency with similar rules in the knowledge base.
7% e MYCIN has reached a set of infections that it feels should be treated (as in the
prob- dialogue of Section 8.4.3). These are presented to the physician, who disagrees with
. The MYCIN’s analysis:
of the My therapy recommendation will be based on the following probable
Ple to infections and potential causative organisms:
Harly, INFECTION-1 is PRIMARY BACTEREMIA
rally) <item-1> E.COLI
ocate <item-2> PSEUDOMONAS-AERUGINOSA
‘0 the Now Teiresias steps in:
le to Are-all these identities correct?
Jriate No
;ain Are there any identities missing?
terjs- Yes

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 327

Which ones?

KLEBSIELLA_ PNEUMONIAE, PROTEUS-NON-MIRABILIS
Are there any identities which shouldn’t have appeared?

Yes

Which ones?

PSEUDOMONAS-AERUGINOSA

Do you want to

1) track down the problem yourself, or

2) allow me to guide the debugging, or

3) ignore it for now and fix it another time
Type 1,2 0r3
2

If the doctor had typed 1, he or she could have tried to sort out the problems
with the traditional WHY and HOW queries on the preceding solution. Note
that Teiresias has already begun to categorize the errors that appeared in the
conclusions. It should also be noted that the three problems could well be
related (perhaps to one missing rule). Teiresias starts by trying to find out
why the wrong organism appeared for treatment. . ..

~ We’ll start with PSEUDOMONAS-AERUGINOSA first:

The following rules were used in deducing that the identity of ORGANISM-1
is PSEUDOMONAS-AERUGINOSA.
RULE 184

Since
{1.1] The category of ORGANISM-1 is not known
[1.2] The gram stain of ORGANISM-1 is gram negative
[1.3] The morphology of ORGANISM-1 is rod
[1.4] The aerobicity of ORGANISM-1 is facultative
There is weakly suggestive evidence (.3) that the identity of
ORGANISM-1 is PSEUDOMONAS-AERUGINOSA.
Is this rule correct?

Yes
Should its premise have failed in this case?
Yes

Which clause of the premise should have failed?
Clause 1

The expert feels the program should have been able to establish a category
and that RULE 184 should not have fired.

Should it have been possible to conclude a category?
Yes

Which one?
ENTEROBACTERIACEAE

PART iV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

There were no rules successfully called in the attempt to deduce this category.

A The following (potentially applicable) rules were NOT executed because the
‘ marked [++] clause failed:
RULE 116
- If
. 1) the identity of ORGANISM-1 is not known

++ 2) the gram stain of ORGANISM-1 is not known
3) the morphology of ORGANISM-1 is not known
4) the site of CULTURE-] is CSF
5) the infection is meningitis
6) the age of the patient is less than or equal to 2 months
Then there is weakly suggestive evidence (.33) that the category of
ORGANISM-1 is ENTEROBACTERIACEAE
RULE 050
If
1) the morphology of ORGANISM-1 is rod
2) the gram stain of ORGANISM-1 is gramneg
3) the aerobicity of ORGANISM-1 is facultative
++4) infection ORGANISM-1 was acquired while the patient was hospitalized
Then there is suggestive evidence (.7) that the category of ORGANISM-1 is
ENTEROBACTERIACEAE
Are all these rules correct?

Yes

Should any of them have been successfully invoked?
No

Is there a rule missing?

Yes

Would you like to give me such a rule now?
Yes

Good . ..

If

1™ THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA
2** THE SITE IS ONE OF THE STERILE SITES
Then:
** THERE IS SUGGESTIVE EVIDENCE (.8) THAT THE CATEGORY IS
ENTEROBACTERIACEAE :

Teiresias parses this rule into its internal representation and then translates
it back into English so the expert can check it. After the expert agrees on the
parse, Teiresias attempts to integrate the new ride into the knowledge base.-: ..

T'hate to criticize, Dr Davis, but did you know that most rules about what the
category of an organism might be that mention:

the site of a culture, and

the infection

CHAPTER 8 / RULE-BASED EXPERT SYSTEMS 329

S ————— .

also mention:
the portal of entry of the organism?
Shall I try to write a clause to account for this?

Yes

How about:
the portal of entry is gastrointestinal. OK?
Yes

Teiresias is itself a knowledge-based program with rules for reasoning about rules
and objects in a MYCIN knowledge base. As the above trace illustrates, the program
systematically searches back along the trace of the reasoning to find the source of the
problem. Once this is done, it helps the user add to or correct the knowledge base. Using
the rule models discussed at the beginning of this section, Teiresias is able to check the
rule for consistency and correct the missing premise.

To help the user add new information, Teireseas keeps a model of each class of
object that appears in the system. The model for a MYCIN object is called a schema.
Each schema describes how to create new instances of a class of objects such as a new
disease organism, drug, or test. The schema for a class of objects also describes how
information is to be obtained for rules of that class—for example, to compute it from
existing data, look it up, or ask the user.

Schemata record the interrelationships of all classes of objects in the MYCIN rule
base. For example, if the addition of a new disease requires that a table of diseases and
their sensitivities to various drugs also be updated, this is recorded in the disease schema.
Schemata also include pointers to all current instances of each schema. This is very
important if it is decided to change the form of the schema throughout the program.

Teiresias organizes its schemata into a hierarchy: A schema for describing bacterial
infections may be a specification of a general class schema, which in turn is a
specification of a general schema for MYCIN facts. Each schema includes pointers to its
parents and children in this hierarchy. (See also the topics of frames, objects, and
object-oriented programming in chapters 9 and 14.)

Schemata also contain bookkeeping information. This includes the author and date
of creation and addition of each instance to the program. It includes a description of the
schema used to create it. Documentation of who created rules when is critical for discus-
sion and analysis of the knowledge base; when rules are primarily condition-action pairs
representing important aspects of an application domain and not full explications of
these relationships, it is important to be able to trace the rules back to their authors for
more complete discussion of the factors underlying their creation.

The top-level structure in the hierarchy of Teiresias’s knowledge is the schema-
schema. This structure is a schema for creating mew schemata, when, for instance, the
domain expert might wish to create a new category of objects. The schema-schema
allows Teiresias to reason about its own knowledge structures, including creating new
ones when appropriate. A schema-schema has the same basic structure as a schema
itself and provides all the bookkeeping information to reconstitute the entire knowl-
edge base.

Although the -development of commercial programs to help with knowledge
acquisition is still in the future. Teiresias has shown how and/or graph search and

[@5]

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

knowledge representation techniques provide a basis for automating knowledge base

R refinement.
. 8.5 Epilogue and References
The model for the rule-based expert system is the production system. Whether the final
rules product is data driven or goal driven, the model for the software is production system-
ygram generated graph search. This material was presented in chapters 3, 4, and 5.
of the We implement simple expert system shells in PROLOG and LISP in chapters 12
Using and 13, respectively. These shells, and some sample rules presented with them, are able
'k the to create a goal-driven search much like MYCIN’s. The rules can include certainty
measures in a limited form for designing a heuristically based search. The student is
1ss of encouraged to add rules to fill out the knowledge base either along the lines of the
1ema. analysis of a car that won't start, as in the beginning of this chapter, or to implement
L new some other application.
how A number of references complement the material presented in this chapter; espe-
from cially recommended is a collection of the original MYCIN publications from Stanford
entitled Rule-Based Expert Systems by Buchanan and Shortliffe (1984).
[rule Other important books on general knowledge engineering include Building Expert
s and Systems by Hayes-Roth et al. (1984), A Guide to Expert Systems by Waterman (1986),
ema. Expert Systems: Concepts and Examples by Alty and Coombs (1984), Expert Systems
very Technology: A Guide by Johnson and Keravnou (1985), Expert Systems: Tools and

Applications by Harmon et al. (1988), and Expert Systems and Fuzzy Systems by Negoita
‘erial (1984).

is a . Because of the domain specificity of expert system solutions, case studies are an
to its important source of knowledge in the area. Books in this category include Expert Sys-
and tems: Techniques, Tools and Applications by Klahr and Waterman (1986), Competent
P Expert Systems: A Case Study in Fault Diagnosis by Keravnou and Johnson (1986), The
f\ CRI Directory of Expert Systems by Smart and Langeland-Knudsen (1986), and
f the Developments in Expert Systems by Coombs (1984).
scus- A pair of more general books that give an overview of commercial uses of AT are
Jairs The Al Business edited by Winston and Prendergast (1984) and Expert S ystems: Artificial
s of Intelligence in Business by Harmon and King (1985).
5 for
'ma- :
the 8.6 Exercises
ema
new L. In Section 8.2 we introduced a set of rules for diagnosing automobile problems. Identify pos-
cma | sible knowledge engineers, domain experts, and potential end users for such an application.
wl- Discuss the expectations, abilities, and needs of each of these groups.

2. Take Exercise 1 above. Create in English or pseudocode 15 if-then rules (other than those
dge prescribed in Section 8.2) to describe relations within this domain. Create a graph to represent
and the relationships within these 15 rules.

CHAPTER 8/ RULE-BASED EXPERT SYSTEMS 331

—

3. Consider the graph of Exercise 2 above. Do you recommend data- or goal-driven search?
breadth- or depth-first search? In what ways could heuristics assist the search? Justify your
answers to these questions.

4. Pick another area of interest for designing an expert system. Answer Exercises 1-3 for this
application.

5. Implement an expert system using a commercial shell program. These are widely available for
personal computers as well as larger machines.

6. Critique the shell you used to do Exercise 5. What are its strengths and weaknesses? What
would you do to improve it? Was it appropriate to your problem? What problems are best
suited to that tool?

332

PART IV / REPRESENTATIONS FOR KNOWLEDGE-BASED SYSTEMS

|

