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This appendix includes many historical advances in neurocomputing.
The back-propagation neural network model was selected after researching
and camparing the many models and concepts summarized here.

The selection of a neural network model for implementation should not
be solely a function of what is most recently popular. It should be done
by analyzing the historical devélogre.rrts in neurocamputing and brain
research. The most appropriate model can then be selected for
implementation as a digital microprocessor chip. This approach not only
aids in the selection of an already developed model, but alsc provides a
foundation of knowledge for the possible development of a new neural
network model.

The following list by no means includes all of the significant
advances in neurocomputing; it does, however, contain many models which
have had a significant impact on the evolution of artificial neural
networks. This list also includes some advances in the neurosciences

which njive insight into how the brain may actually work:

\

He formulated a general elementary principal of association:

"When two brain processes are active together or in immediate
succession, one of them, on reoccurring, tends to propagate its
excitement into the other."

James also noted the general tendency of ﬂ@rai_n to be inherently
application specific: B

"The brain is not constructed to think abstractly...it is
constructed to ensure survival in the world. It has many of the
characteristics of a good engineering solution applied to mental
operation: do as good a job as you can caply, and with what you
can cbtain easily. If this means using/ad hod) solutions, with less
generality than one might like, so be {t." f]
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1943 Warren S. McCulloch and Walter Pitts/

—
They modeled a neurcn as a g:ma?evwe (threshold logic unit) which
is on only if the weighted -of the input signals to it exceeds a
given threshold. This is threshold logic. (See Fig.5) [2]

Figqure 5. The Threshold Logic Unit (Fiqure from [2])

) W\

4o VAW R;\Dv\%f

- \ <0
1945 John von Neumann A Q Q\\ e (J\
He formulated idea of digital computer which has program stored along
. . ; ) _— Ty
with data in computers memory. [1}
1949 Donald 0. él;b)

He presented first explicit statement of the physiological learning
rule for syndptic modification: >

'%enanaxonofacellé_jsnearencmghto_g;giteacell_g, and
repeatedly or persistently takes part in firing it, some growth /q &
process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased." [1] dorwfq:. )

Note the similarity to the elementary princple of association of S 7
William James (1890). %%
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1950 K.S. Iashley

He observed that rats demonstrated learning behavior even though
large areas of their cerebral cortex was removed. This demonstrated
the "robustness" of the brain., It also showed that the
represéntation of information in the brain is distributed rather than
localized. [1]

m 1954 B. Farley and W.A. Clark

They developed first computer software simulation of nervous system.
[1]

1958 0.G. Selfridge

He developed the "pandemonium model: a paradigm for learning” in
which mulitiple independent systems simultanecusly lock at the input
and_respond according to their own bias. Selfridge also used the
mathematical concept of "hill-climbing" to modify the connection
strengths (weights) between the units of his model. This consisted
of medifying the weights by a small amount in all directions and
choosing the direction that gives the largest increase in
effectiveness. The process stops at the peak of the first hill it
encounters. This is a local maximm. [1]

\N\0 Q’i/ £ \’\\E7
0
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1958, 1960 F. Rosenblatt

He developed the PERCEPTRON; the first

|2

recisely specified,

camputationally-oriented neural network; a learning machine

potentially ‘capable of camplex adaptive behavior. [1]

In 1958

Rosenblatt developed the basic structure of the PERCEPTRON and in

1960 he developed the perceptron learning rule.

Fig. 6 shows the

cperation of the PERCEPFTRON. The imput layer consists of threshold

logic units of McCulloch and Pitts (1943).

The adaptive threshold

element collects a weighted sum from the imput layer and applies the
hard-limiting sigmm function to them. The inputs can be either 0 or
1. The output is +1 if the weighted sum exceeds a fixed threshold,

else the ocutput is -1.

weights by the following rule [3]:

Wk+1) = Wk + Em(ngxz)_m"c

Where:
weight

W(k+l) = the next weight vector
ek = (d&k - yK):; this is the error signal. \
= desired response (i.e., supervised learning)

¢e:

_y_]_~:=1.3ina1ya.rt1:m:

Fix¢d Random

Weights \ X

0.0

Inpuis to
Adaplive

/ Element

Anaiug-
Yalued
Relina
Thpe
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Xk = input vector <

Quiput
Decidon

4
Desired Respanse

/ {101}
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Elements

[+1,-1}

Adupiive
Threshold
Element

Input

Wk = the present weight vector; each element is a connection

Pattern
VYeelor

(1,0}

The perceptron learning rule adjusts the

£+ ()

(EQ. #1)

[ Foo [
e £ »
* "

<5

G\ PRy TNPN T

ETA = the learning rate (Roserblatt normally set this to 1)

Threshold
Device

1
I
1
|
T
1
| Quantizer
1
I
1
I

L {3, Rosenblart Error
—"'X. Perceptron [ —
Ruie z

k

dk'”

vh

Desired Respanse Inpui

{tratning signal)

The adaptive threshold element of the Perceptron.

Figure 6. The PERCEPTRON (Figqure from Widrow [31)
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1960 Bernard Widrow and Marcian E. Hoff

They developed the ADALINE (Adaptive linear element) which has a
structure similar to the adaptive threshold of the PERCEPTRON of
Rosenblatt (1958) except that the input signals are not limited to 0

and 1; any analog value can be input. Also, the ADALINE threshold is
variable:
TH = w0 *(Bias) (BQ. #8)

This is a weighted sum from a bias connection. Widrow and Hoff used
Q/ 4 an error correcting algorithm for adjusting weights known as the
> least mean square (IMS) algorithm which minimizes the sium of scuares
\ \/Q'L of the linear errors over the training set, The error signal used by

\\( QJ the algorithm is the difference between the desired output of the
\?‘ Y network and the linear cutput of an ADALINE before the threshold is

A(Q f/) applied. (See Fig. 7). These errors create an “error surface in the
41/ ~ weight space." This error surface represents a topography in which

™ Q_ the valleys contain minimm errors and the lowest "elevation" is the
% glabal minimm representing the optimal answer. The error surface is
searched by using an instantanecus gradient to follow the path of
\\ steepest decent and minimize the mean square error. This is similar
V to "hill—climbing" but in an inverted reference frame {i.e., fird the
bottoms of the valleys rather than the peaks of hills). The ADALINEsS
and MADALINE (multiple ADALINEs) of the 19607s only had adaptive
elements in one layer. Fig. 7 shows the operation of an ADATINE and
a MADATTNE. The learning rule for each ADALINE can be stated as

]: 1 ()

/oo

\
sepve

AN ]

LA

[
(EQ. #9)

-

follows [1] [3]:
W(ktl) = Wk + ETA(ek(XK)/ (/IXKI2)) [

Where: Wk = the present weight v
- weight
W{k+1l) = the next weight vector _
ek = (dk - sk); this is the error signal.
dk = desired response (i.e., supervised learning)
sk = (32wk(xk)} this is the linear cutput before the
__ threshold device! (i.e., the weighted sum)
Xk = input vector (IXkll is the length of the vector)
ETA = the learning rate (normally ranging from 0.01 to 1.00)

each element is a connection

-
f

input

Patlern , Xou=+] Blas Input
Yector . 1
Weights !
Xk : w,, Threshold | N ‘S \) é ':T D \’ D
Weigl =41 "
* g ey el I e D R/ 5 \él
] Isk }S -
1 r—— e g Lnear . \\ \ B
xn_ : 1 Crutpuc N
! + ka Hinar X I
, inary +
X e i a4 | Cutpat :{:
-1

{1}

Threshold
Leviee
Output

AW ims
Xu  Algorithm

T
1
1
i
1
1
1
|
i

vH?

* Xy

Desired Response Input
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Figure 7. The ADALINE and MADALINE (Figure from Widrow [3])

- 43 -


WUNDERJT
Typewritten Text

WUNDERJT
Typewritten Text

WUNDERJT
Typewritten Text

WUNDERJT
Typewritten Text

WUNDERJT
Typewritten Text
_______________________

WUNDERJT
Typewritten Text
______________________________________________

WUNDERJT
Typewritten Text
______________________________________


¥

M 1958 to 1969

The state of neurocamputing research during this period of time is
depicted in a statement by James A. Anderson, a neurcphysiologist and
well-published neurocamputing researcher:

"In the popular history of neural networks, first came the classical
period of the PERCEPTRON, when it seemed as if a neural network could
do anything. A hurxired algorithms blocmed, a hundred schools of
learning machines contended. Then came the onset of the dark ages,
where, suddenly, research on neural networks was unloved, unwanted,
and most important, unfunded. A participating factor in this sharp
decline was the publication of the bock "PERCEPTRONS" by Minsky and
Papert." (1969) '

Anderson does however point cut that this was a brilliant book, but
unfortunately in the 1960’s there was a general public suspicion of
neurccamputing so that this bock merely amplified the already growing
public discontent with neurocamputing. [1]

1969 Minsky and Papert

They cbserved several shortcomings of the PFRCEPTRON. The
shortcoming which received the most public attention was that the
PERCEPTRON could not classify all patterns presented to it. (e.qg.:

the ocutput claslsification for certain sets of.inputs, such as the é"
'ﬁ ini%gurt S:xpgigi{ft—;é, [ci:?uli not be done). 'This :itfi problem of & O\f(y
He developed thecries on associative memory. [4] \?&b

ﬁ- 1973 chr. von der Marisburg Q;/_V (/\\ QSJ@(\/

He observed direct topographical mapping of visual field onto the
surface of the brain’s visual cortex. [1]

1974 P. Werbos

He developed the theoretical concept of back-prog tion 1. ing for
neural networks [1].

w -up"” with the development of stable states in the nervous
system. [1]

1976 S. Grossberg

]m] 1975 W.A. Little and Gordon L. Shaw
They observed that brain memory, for short time periods, is

He develcoped Adaptive Resonance Theory {(ART):; a mmber of

mathematical hypotheses about the urderlying principles governing
biolegical neural systems. [3] (e.g., cortex tunes itself to pick—up
the most useful features of the enviromment and ignores or suppresses \

other information). [1]
%/ e\/R?"" C,i \\{ 6 é '
é o v Q\?\@\W’[J
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m 1980 Stephen Grossberg

o

i

i

He proposed that a neural network should do error correction by
itself, (i.e., unsupervised learning}. [1] _
i.e., can generalize/classify unlabeled data

1982 J.J. Hopfield

He published a paper containing a ccherent, new neural network

model. This paper reestablished the favorable public perception of
neural networks which was lost during the 1970’s. The Hopfield model
relies on an exhaustive connecting of all neurons in the network. In
the original Hopfield model, each neuron is a binary threshold
element performirg the hard-limiting, sigmum function (i.e., output
equal to +1 if the threshold exceeded, else -1). The exhaustive
connecting of neurons allows lateral inhibition between neurons (also
known to exist in brain functioning). The learning algorithm is not

a welght changing function of error, cammon in many other models, but
rather an algorithm which determines the degree of connectiveness
between all neurons (i.e., active, irhibited., or partial
comnectivity). This is done by minimizing a global "energy" for the
system. This "energy" is a function of the present state of each
neurcn (+1 or -1) and the fixed weights on each connection. [1] [5]

1982 Teuvo Kohonen

He developed artificial system of self-organizing feature maps that
can show the same behavior as the brain’s visual cortex for direct
topographical mapping of visual images. The structure of the model
is a "slab" of processing units in which nearby "neighboring” units
respond similarly. When an input is provided to the model, the unit
which behaves in the most desirable way has its synaptic weights
(from the input relay network) strengthened. The synaptic weights of

nearby neighbors are charged so that they behave more like the
"well-behaved" unit. [1]

1983 Kunihiko Fukushima, Sei Miyake and Takayuki Ito

They developed the NEOCOGNITRON; a multilayered neural network
dedicated to the recognition of handwritten characters. This meant
that the system was considerably constrained because of the nature of
its inputs (i.e., only lines of varying degrees of complexity). The
NEOCOGNITRON was modeled after the actual anatomy and physiology of a
biclegical visual system. Although this network is miltilayered, it
learns by a sequentially-directed learning procedure where the
expected behavior of each layer is well-known and therefore there is
no interdependence between layers during the learning process. [1]
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m] 1983 S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi

They developed the concept of SIMUIATED ANNEAIING to deal with the
problem of local maxima (or inversely, local minima) when using
"hill-climbing" (or a variation of it such as gradient decent). The
problem is that if a topography is being searched for the highest
peak (or deepest valley), how do you know if you have merely found a
local peak (or valley) which is not the optimm? These undesired
ocutcames are a result of the step-wise processes normally used which
effectively "walk" across the terrain one step at a time and came to
a camplete stop when the next step in any direction would no longer
be yphill (for "hill-climbing"). The soluticon proposed by SIMULATED
ANNFALING is to essentially get a "birds-eye-view" of the terrain
before settling to a local hill. The algorithm used is taken from
thermodynamics and works with the probability of finding a system in
a particular configuration with a given energy. For a neural network
error surface (or energy surface, for Hopfield and BOLTZMANN models),
the given energy is a function of the elevation of the topography. [1]

1984 J.J. Hoprfield

Hopfield substitutes the non-linear sigmoid for ~13imj
sigmm function previcusly used as a transfer function in his
network’s neurons. (see Fig.8) [1] [6]

o’ L/‘{vﬁ/
w‘_\ \‘\:ﬁﬂ}(\ W@
tx) 0 / Q f\ﬁ

Ficqure 8. The Sigmm and Sigmoid Transfer Functions (Figure from [61)

1985 David H. Ackley, Geoffrey E. Hinton and Terrence J. Sejnowski

They developed the BOLTZMANN MACHINE; a neural network with the same
basic units as Hopfield’s original 1982 model (sigmum transfer
function) and with learning based on a similar energy function.
However, for the BOLTZMANN MACHINE, the state of the neuron is made
‘probabilistic (hence a BOLTZMANN probability distribution). The
BOLCTZMANN MACHINE also uses SIMULATED ANNFALING (Kirkpatrick, et al.
1983) to avoid getting stuck at local minimm energies. Ancther
significant differernce is that the BOITZMANN MACHINE was made to work
for a muiltilayer network. [1]
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1986 D.E. Rumelhart, G.E. Hinton and R.J. Williams

They developed the BACK-PROPAGATTION multilayered neural network. The
neurons of this network use a non-linear sigmoid transfer function
applied to a weighted sum of input signals (including a bias) to give
an analog ocutput ranging from 0 to 1. However, since the sigmoid
function is asymptotic, output values of 0.1 and 0.9 are considered
as 0 ard 1 for classifications requiring binary transformations. The
most significant aspect of this network is the learning process via
backward propagation of error signals from one layer of neurons
backwards (toward the input) to a previcus layer. This kind of

learning is called the “%We“. The error surface
Created is searched by the me of "gradient decent” somewhat

similar to that used by the IMS algorithm of the MADALINE (Widrow,
1960) . The network learns as follows: [1] [3] (4] [7]

1) Feed input layer an input vector.

2) Propagate the signals forward via non-linear sigmoidal
transformation at each layer until an output vector is created at
the last layer.

3) Create an error signal from the difference of the actual output
signals and desired outputs provided to the network.

4) Use the error signal to change the synaptic connection weights
between the output layer and the previocus layer.

5) Create an "effective" error signal from the previous error signal
and the weights that were just changed.

6) Use this new error signal to change the synaptic connection
welights located one level closer to the inputs.

7) Repeat steps 5 and 6 until weights have been changed at all levels
(i.e., this procedure works for any mmber of levels),

8) Repeat steps 1 to 7 for each input/desired-output exemplar pair in
the training set.

9) Repeat steps 1 to 8 until the desired cutputs have been obtained
for every input/desired-output exemplar pair.

- A7 -
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For the back-propagaticn network shown in Fig. 9 the mathematical
representation of the learning algorithm is as follows:

w(kt+l,j+1) = w(kj) + ETA(ek) (x]j) (EQ. #10)

Where:

w(kj)

one of the elements of the weight matrix [Wkj] for the
connections between the hidden layer (level j) and the
cutput. layer (level k).

w(k+l,j+1) = the next value of element w(kj)

ek = the error signal for one of the neurcns of the output layer
(dk = yK) (Yk(1-yk)) where yk({1-yk) is the derivative of the
sigmoid transfer function with respect to vk

desired response (i.e., supervised learning)

the analog cutput from one of the neurons of the output layer
cne of the outputs from the hidden layer

ETA = the learning rate (usually ranging from 0.01 to 1)

8% &
o

And for the commection weights between the input layer and the hidden
layer:

w(j+1,i+l) = w(ji) + ETA(ej) (x1) (EQ. #11)

Where:

w(ji) = One of the elements of the weight matrix [Wji] for the
comnections between the input laver (level i) and the
hidden layer (level j).
w(j+l,i+1) = the next value of element w(ji)
ej = The "effective" error signal back-propagating through
one of the neurcns of the hidden layer.
= (back _error) (xj (1-xj))
back error = The back-propagating weighted sum of error signals (ek’s)
coming backward from each of the neurons in the output
layer (i.e., (ek) (Wkj) for a neuron in level j)
xi = One of the inputs to the network
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Ficure 9. The back-propagation network (Figure from Widrow {37])
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MBW B. Widrow, R.G. Winter and R. Baxter

They developed the MADALINE IT by expanding the MADALINE to a
multilayer network. The learning rule is a least mean square
algorithm which uses hamming errors and corrects weights in a
direction co-linear to the forward feed of the input vector (i.e.,
does not propagate backwards). The transfer function is still a
hard-limiting sigmum function (See Fig. 10) (3}

Input
Patlern Perturbation
Vecior

Qutput
Yector

Y,
tsl,p 1

Sum Squared
2 Error

@ {4 x Hamming
Error)

(+101] Tk

Desired Responses
{+1-1}

Figqure 10. MADALINE IT (Fiqure from Widrow [3])

myy B. Kosko

He developed bidirectional asscciative memory ( B2M) , a two layered
neural network used to determine if two patterns match according to a
predetermined association set in the network. [5]

;Ih 1988 David Andes
i

=

He developed the MADATINE TITI modifying the . The
hard-limiting si transfer functio ith the

non-linear sigmoid function. [30] Widrow cbserved that the resulting
e was mathematically equivalent to back-propagation for
small perturbations of the linear autputs. (See Fig. 11) [3]
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%erebellum

Flssure of Sylvius

Cranial
Nerve:

G

. The structures of the human brain

Parietal lobe

Temporal ang. Occipital
rontal iobes lobe

Fornix
T

Frontal
fobe
Temporal
lobe
Optic chiasma
Pituitary

Cranial nerve 4
K"’% EPonsi
Medulla

S

Stru;t(re

Descripticn

Function

Cortex (outer sur-
“ face)

White matter {inner

cerebrum)

Thin (3-8 mm), highly folded sheet

with large surface area; most re-
cent e iona qprment;
high degree of development

Composed of perve tracts con-
necting parts of cortex 10 each
necting paris of z

) nd to rest of brainand

SE cor

Center of the mind; seat of con-
scious thought, memory, speech,
intelligence, personality, and

judgrment; center of 58 nsory-ro-
Jor.coordination

_an@'_o_fégﬂs}ﬁ?_n, including

sight, hearing, taste, etc.

@@rpus callosum \
(9 (ke

Limbic system

ppocampus
Fornix
Cingulate gyrus
Amygdala

@ | Hypothalamus !

@l E:éfébellum l("little
T

@ rain stem {medulla)
< 2
PZW I Reticular formation&

@ [Fond]

o
N 9\\\"’\’)

Consists of 300 million separate
neuronal lines

Groups of cell bodies arranged in
shape of a football

Internal region of forebrain, di-
vided into several regions

Linked to sympathetic nervous sys-
tem and pituitary

Baseball-sized lump of gray-white
tissue lying on either side of the
brain stem

Extension of spinal cord within the
skull

Consists of fibers and cell bodies
running from spinal cord to cere-
“H-T'Lm' —
bral hemispheres

Consists mainly of white matter
lying anterior to cerebellum and
between midbrain and medulla

Connects the halves (hemi-
spheres) of the cortex

‘Relays sensory information to
. —
coriex Tvision, hearing, touch,

taste); regulates sieep and wake-
fulness in conjunction with fim-

bic system
Involved in emotign, m_gﬂxit.ig;\,
and reinforcement

Controls basic drives {eating,
drinking, sleeping, sexual behav-
ior}; regufates temperature,

bload pressure, heart rate

—_—
Involved in sensory-motor coer-
dipation; if damaged, loss of

equilibrium and motor coordina-
tion results

Invalved in controi of respira-
tion, heart rate, and gastrointes-
tinal function -~
il Ly

Involved in control of arausal
Aoz

and alertness

and aienn

Acts as bridge linking the vagious
[parts of the brain and as relay
station from medulla to higher
centers
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Nevgons

EIGURE 172 (a) A variety of neurons from dif-
ferent parts of the human nervous system. The axon
of each neuron is designated by the letter a, and
the dendrites are indicated by the letter d. Dendrites
receive excitation from other cells and conduct
impuises toward the cell body, whereas axons con-
“Juct nerve impulses away rrom the cell body. (b)
~The “typical’ neuron shows many short dendrites
and a single, elongate axon.

Dendrites{d)

s
e

[ Cell body
3 QP -
L Nycleus

Myelin
sheath

Synaptic knob

(a) ‘ ]

0.
=
)
=]
A
t

FIGURE 17%—12 Initiation of an action potential
(nerve impuise) by transmitter substance. Transmit-
ter substance reaches the postsynapiic neuron, re-
ducing its potential and creating an EPSP (excitatory
postsynaptic potential). If the EPSP reaches a thresh-
old level, an action potential is triggered.

1}
el g
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=
% 40— Action potential
> +20H
a
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Z
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> 2
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Resting potenrial
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17-6 INTEGRATED CIRCUITS OF

EURONS; THE NERVOUS SYSTEM
.-""—_‘-——-._,_.__’J

Basic design

¥ Jen the back of a television set or a
radio and you will see a maze of wires and
printed circuits. Look inside a computer or
a telephone switchboard and you will find
a tangle of interconnecting wires and other
electronic gadgetry. The wires and circuiis
of these communication devices are the
fundamental units of operation, but the
sequence and arrangement of the compo-
nents determine how the machine operates.
The#fundamental unit of structure.in the
nervous system is the neuron, and similarly
#the waVv neurons are hooked together de-
termines the manner in wiich the nervous

system functions (Figure 17-13). 7 ——
Lt et e g™, )
There arathree different fu; nal classes

i eive
of neuron@ws, which recei

stimuli_rem the environment and transmit

information to_the central nervous sysiem

thrain and spinal cor forn s, which
condug of the hraip and spanal

card to the glands and muscles'; aghinter-
neurgns, which actin an integrative capacity
and shuttle signais back and forth between
the neurons of various parts of the brain
and spinal cord. Over 997 O the Neurons
of the body and brain are interneurons.

1 siTAplified way figure 17-131lustrates
» «ematic wiring diagram of the nervous
systen. Note that an impulse entering the
spinal cord via a sensory neuron has many
possible pathways. Rarely does the signal
that traverses a senspry neurcn directly
activate a motor neuron leading to an ef-
fector tfor example, musclel; typically the
signal travels upward via the spinal cord
interneurons and through a number of rgiay
centers in the brain before reaching the

higher centers. From there the command
signals travel down the spinal cord, again
via relay centers, and via a motar neuran
the effector is triggered to activity. Note
that the more neuranal cells in the circuitry,
the more flexible can be the response.
The nervous system’s Circuitry is com-
posed of two basic subdivisions: the central
nervous system (CNS), comprising ihe struc-
tures encased within the skull and the ver-
tebral column, and the peripheral nervous
system {PNS), which lies outside the skufl

and vertebral column but connects up with
the CNS via spinai and cranial nerves.

FIGURE 17-13 Simplified circuitry of the nervous
system. Neurons are arranged into cahles consisting
of many axons and dendrites. Axons, bundled to-
gether to form a multistranded cable, form the nerve
fiber or nerves we commonly see in a dissected
specimen. The collections of axans and dendrites

in the brain and spinal cord—the information cen-
ters—are called tracts.

Interneurons

)
: O '
) _%;uilaf Cerebellum

L e

"{@ —

/;; @) Tnierneurons
@/(Q\/<
R o=
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~ —
.
Receptor cef) ";I @ .
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SENSING THE WORLD

Vision

Light from a visual stimulus is inverted as it
passes through the lens. It then hits the reti-
na at the back of the eye, where light-sensi-
tive cells turn it into a message of electrical
pulses. These are carried along the optic
nerve from each eye and cross over at the
optic chiasma — a major anatomical landmark.
The optic track then carries the information
to the lateral geniculate body, part of the
thalamus. This shunts it on to V1 at the back
of the brain., The visual cortex is split into
many areas, each processing an aspect of
sight, such as colour, shape, size and so on.

Layout of visuval cortex:

V1 — general scanning

V2 — stereo vision

V3 — depth and distance

V4 — colour

V5 — motion

V6 — determines objective (rather than rela-
tive) position of abject

‘Where?’ path: V1-V2-V3-V5-V6

“What?’ path: V1-V2-v4

V1 mirrors the world outside in which each
peint in the external visual ficld matches a
corresponding point on the V1 cortex. When
a person stares at a simple pattern like a
grating the image is reflected by a matching
pattern of neuronal activity on the surface of
the brain.

The ‘map’ is distorted, as the neurons
responding to the central arca of the visual
field take up a much greater cortical area —
so the ‘picture’ painted on V1 is a little like
that seen through a fish-eye camera lens.
The centre of the retina, the fovea, is much

visual
~ thalamus
" brainstem
-
7 V7 V7
: V6 V3 V3P
 Frontal 7Y ?’PS)ID
, Cortex VI v
T VS N iy
MEDIAL ViEw LaTeErAL VIEW

Above: Adwareness qf sighted objects is conveyed to the
limbic system but is not consciously visual.
Below: Each visual element is processed by a separate

brain area.

more densely packed with neurons and sees
far more detail. The eyes therefore dart
around, in a series of leaps called saccades, in
order to scan the visual field in detail.
Saccades are triggered by the attention sys-
tem of the brain and are not gencrally under
conscious control.

You do not need eyes to see. Blind patients
have been fitted with a device that turned
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medial © " .
_genicu- T
oo "late body. -
FHeschi's L
Byt inferior

Collietis

cochlear nucleus

The neural pathways that convey sound igforman‘on to

different parts of the 'brain.

low level video pictures into vibrating pulses
that could be ‘read’ tactilely, rather like
Braille. A camera mounted next to the sub-
jects’ cyes, spread the pulses — which felt
like a grid of tingles — over their backs, so
they had continuous sensory input from the
visual world. The patients soon started to
behave as though they were ‘really’ seeing.
They ceased to be aware of the tingles
and their ‘point of view’ shifted to the
camera. One of the devices had a zoom lens,
and when an experimenter — without warn-
ing — operated the zoom, causing the image
on the subject’s back to expand suddenly
as though the world was looming in, the
subject ducked and raised his arms to protect
his head.

However, there seemed to be a limit to the

impact of visual information presented in this
way. After the (male) subjects became prac-
ticed ‘viewers', an erotic picture was pro-
jected — the subjects were able to describe it
accurately but were unmoved by it.

Hearing

The neural pathways carrying sound informa-
tion from each ear divide into unequal parts
once they leave the ear.

On each side the broader path goes off to the
brain hemisphere opposite the ear from
which it came, so sound from each ear reach-
es both hemispheres — but most of the left
ear’s signals go to the right hemisphere and
vice versa.

Both hemispheres have a distinct role in
sound processing, and this means that sounds
are dealt with (and therefore experienced)
slightly differently according to which ear
they enter. For example a person deaf in the
right ear will receive most sound signals in

the left auditory cortex (the side of the brain

opposite the ‘good’ ear). This is the side that
deals mainly with the identification and nam-
ing of sounds rather than their musical qual-
ity, so rhythm and melody perception may
be blunted.

Conversely, a person deaf in the left ear ay
find that words are more difficult to distin-
guish than music, irrespective of loudness,

Smell

Flavour perception seems to be Processed
separately from either smell or tasté. In one
study students who learnt new words while
sniffing an unusual smell and then sniffed the
smell again when they had to recall the
words showed a 20 per cent boost in mem-
ory power.

113
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Whether we fAnd a smell nice or nasty
depends crucially on what memories we assa-
ciated with it. For one person the smell of a
bonfire may bring back happy memories of
fireworks and winter barbecues, for another it
may bring melancholy recollections of sum-
mer’s end. The first person is likely to find the
smell pleasant and the second to dislike it.
Scanning studies suggest that pleasant odours
mainly light up the frontal lobes’ smell
area, particularly on the right-hand side.
Unpleasant odours activate the amygdala and
the cortex in the temporal lobe (insula).
Unlike other senses smell passes directly to
the limbic system. This fast route to the
brain’s emotional centre gives smell its
power to elicit Strong emotional memories.

Smell is d{ﬁrerentﬁ'om

other senses because it limbic

goes siraight to the lim- ;_,SYStem?%
bic system — a fast : ® 5:’ —41 .
route to the brain’s . froniaj‘ fr;gntal
emotional centre. Unlike lobes lobes
other senses it does not

cross from nestril to g

opposite hemisphere.

Taste

'Damage to the frontal lobe of the right hemi-

sphere may turn ordinarily hungry people into
fanatic seekers of fine food. Gourmand syn-
drome has been identified by Swiss researchers
who first suspected it when two of their
paticnts developed foodie obsessions after sus-
taining brain injuries. The vesearchers subse-
quently scanned thirty-six gourmands: thirty-

four of them had lesions in the right frontal
lobes. The mechanism causing the new inter-
est in food has yet to be revealed — serotonin
levels in the frontal lobe may play a part.

Sensation

Sensation travels along several different types
of nerves to the brain. Pain is carried by two
types of nerve — fast, which carries sharp pain;
and slow, which carries deep, burning pain.
Stimulation of one type blocks messages from
the other by closing a ‘gate’ in the spine. That
is why ‘rubbing it better’ is effective.

The anterior cingulate cortex - an area pri-
marily associated with emotion and attention
— is essential for conscious pain. Opioid-type
analgesics (including morphine and codeine)
are the most effective type of painkillers. They
block the receptors in brain neurons normally
be filled by enkephalins — the brain’s own
painkilling chemicals, which are relcased by
acute pain stimuli. Opioids also damp down
activity in the anterior cingu]ate cortex.

The importance of the anterior cingulate
cortex in pain perception is demonstrated
by brain scans showing that people with
cardiovascular diseasc appear to get angina —
the chest pains associated with lack of oxygen
to the heart — only when the anterior cingu-
late cortex is active. In some people, it
scems, the anterior cingulate cortex lights
up as soon as the heart is short of oxygen.
This creates conscious pain, warning them
to stop doing whatever is straining the heart.
In others the heart can be severely short
of oxygen before the anterior cingulate cor-
tex is activated. These people can develop
potentially dangerous heart discase without
angina, making them vulnerable to
heart attacks.

surprise
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Left: The vast majority of the

cortex is given over to sensory

processing — only the frontal
lobes are dedicated to non-

sensual tosks.

Below: All incoming sensory

information (except smell) goes
first ta the thalamus. This
limbic nucleus acts like a relay

station, shunting the data onto

G‘PPI‘OPI‘.(GEB cortical areas fOl’

i
#

J ! processing.
hearing coordination
s |
The sixth sense
Proprioception is the sense of body aware- visual cortex - auditory cortex
ness telling us the position of our limbs, our _ _ A
e . somato sensory visuo-spatial
; posture and equilibrium. It involves the & motor cortex cortex
integration of several sensory inputs: touch {parietal lobe)

A

and pressure sensations from skin, muscles
and tendoms; visual and motor information
{ from the brain; and data about our balance

from the inner ear. Together they amount
almost to a sixth sense. Proprioception uses
so many different brain areas that it is very
rare for it to be lost altogether. Occasion-

ally, though, people suffer brain injuries i :
Sensory

that so disturb proprioception that they lose

. . . information

_ all sense of having a body. Certain medita- from body i
! tive states involve tﬂissociating the conscious Y i i
brain from proprioceptive input, inducing a feedback visuo-spatial T
. . . : loop to information i ;
fee]mg of disembodiment and maybe give b
. and from i |
. the impression of floating or levitation. cerebelflurn signals from eyes’ i
Out-of-body experiences, in which people :
report becoming detached from their bod- i
ies and floating around in mid-air, may be THe THALAMUS signals from ear . —i

due to temporary loss of proprioception.




12 MAPRING THE MIND

e HUMAN SENSES

./’Vr/
r\/-'ff".,,

i

TN

MO sk e M D

It

SENSING THE WORLD

Vl.SlQl'l :
Lwht from a visual stlmu;,u is inverted as it

passes throuch the lens. Itzhc_n Lits the reti-

na at the back of the eve, where hght SETISi-
! tive cells turn it into a message of electrical
pulses@/ hese are carried along the optic
nerve from each eye and cross over at the
¢ optic chiasma —a major anatomical landmark,
The optic track then carries the information
to the lateral geniculate body, part of the
thalamus. This shunts it on to V1 at the back
of the brain. The visual cortex is split inte
many areas, cach processing an aspect of
sight, such as colour, shape, size and so on.

Layout of yisual CO]tC‘{rUJ 1'- <N

V1 — general scanning
V2 — stereo vision

i V3 — depth and distance
i V4 — colour .

i VS — motion \
V6 — determines objectn (rather than rela-
tve) position of object

Wl}ere? Path; \f/l -V2- V3 V5-Vo

/W]af ath: VI vi.ve’
e p

V1 _riirrors the world outside in which &ach

(.pmnt in the external wvisual feld matches

corresponding point on the V1 cortex. When
a person stares at a simple pattern like a
graling the imagc is reflected b_\f a matching
pattern of neuronal activity on the surface of
i the brain.

The ‘'map’ is distorted, as the neurons
responding to the central area of the visual
field take uf) a much greater cortical area
painted on V1 is a little like
that seen through a fish-eye camera lens,

so the ‘pictur e’

The centre of the retina, the fovea is. raiich

P

R more det;nl.

visual
thalamus

brainstem

W7 W7
Ve V3 V3
© Frontal V2 V2o ;/;ﬁ
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Cortex w2 ViV
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Above:

limbic spstem huc is not consciously visual.

Awareness of sighted objects is conveyed ra the

Below: Each visual element is processed by a separate

brain area.

more densely packed with neurons and sees
The eves therefore dart
around, in a series of leaps called saccades, in
order to scan the visual feld in detail.
Saccades are triggered by the attention sys-
tem of the brain and are not generally under
comscious control, I

You do not nesd evés lo see. ‘Blind patlcnts
have been ftted Wlth a device that turned
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-—-collichs.

cochlear nucleus

The neural pathwayps that convey sound jrjormation to

different parts of the _bram.

1%' level video pictures into vibrating pulses
that could be ‘read’ tactilely, rather like
Braille. A camera mounted next to the sub-
jects’ eyes, spread the pulses — whicl: felt
like a grid of tingles — over their backs, so
they had continuous sensory input from the
visual world. The patients soon started to
behave as though they were ‘really’ seeing.
They ceased to be aware of the tingles
and their ‘point of view’' shifted to the
cammera. One of the devices had a zoom lens,
and when an experimenter — without warn-
ing — operated the zoom, causing the image
on the subject’s back to expand suddenly
as though the world was looming in, the
subject ducked and raised his arms to protect

his head.

However, there seemed to be a limit to the

impact of visual information presented in this
way. After the (male) subjects became prac-
ticed ‘viewers’, an erotic picture was pro-
jected — the subjects were able to describe it
accurately but were unmoved by it.

Hearing

The neural pathways carrying sound informa-
tion from each ear divide into unequal parts
once they leave the ear.

On each side the broader path goes off to the
brain hemisphere opposite the ear from
which it came, so sound from each ear reach-
es both hemispheres — but most of the left
ear’s signals go to the right hemisphere and
vice versa,

Both hemispheres have a distinct role in
sound processing, and this means that sounds
are dealt with (and therefore experienced)
slightly differently according to which ear
they enter®For example a person deafl in the
right ear willeTeceive amost spund -sigpals in
the left auditary-cortex-¢the side of the brain
opposite the ‘good’ ear), This is=the-side-that
%’déﬁﬁﬁc&tign and namg
ingof sounds rather than their musical qual-

ity, so-rhythm and-meledyperception- may

be-bitmted. :

Conversely, aoperson deal in the left ear may

find that words are more difficult to distin-

guish than music, irrespective of loudness.

deals-mainly-with the

Smell

Flavour perception seems to be processed
separately from either smell or taste. In one
study students who learnt new words while
sniffing an unusual smell and then sniffed the
smell again when they had to recall the
words showed a 20 per cent boost in mem-
ory power.
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Whether we find a smell nice or

nasty
depends cruciallv on what memories we asso-
ciated with it. For one person the smell of a

four of them had lesions in the 1'ight frontal
lobes, The mechanism causing the new inter-
est in food has vet to be revealed — serotenin

bonfire may bring back happy memories of  levels in the froptal lobe may play a part. S
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%\C}l Sensatiom travels along several different types

of nerves to the brain®Pain is carried by two

fireworks and winter barbecues, for another it

may bring melancholy recollections of sum-

mer’s end. The first person is er}}! to find

smell pleasant and the second to dislike it,
Scanning studies suggest thar®pleasant ?ours types of nerve ﬁ fast, which carries sharp pain;

mainly light up the frontal lobes'/smell and “slow, which carries deep, burning pain.

area, particularly on the right-hand [sk(.j\%bﬁg\‘ imulation ol one type blocks messages from
@Unpleasant odours activate the amygda]il\xaﬁé] the other by closing a ‘gate’ in the spine. That
the -eortex in the temporal--lobe (insula).

is why ‘rubbing it better’ is effective.
oo : _ } 14
,j@"’ Unliké other senses smell -passes divectiy-t

The anterior cingulate cortex — an area pri-

i
1
i

the limbic svstem:. This fast route to the
brain's emotional centre gives smell its
N power to elicit strong emotional memories,

- s 2 L
e R i R

Smell is different fmm

other senses hecause it limbic

goes stmighr to the lim- _Vsystem,_.’

a fast - T

ﬁ‘6 nital

bic system -

route to the brain's frontal

) ] lobes lobes
enrotional centre. Unlike E{:
other senses it does nor j}

Cross ﬁ'am noseril to

opposite hemisphere.

mage to the frontal lobe of the right hemi-
sphere may turn ordinarily hungry people into
fanatic scekers of fine food. Gourmand syn-
drome has been identified by Swiss researchers
who first suspected it when two of their
patients developed foodie obsessions after sus-
taining brain injurics. The researchers subse-
quently scanned thirty-six gourmands: thirty-

marily associated with emotion and attention
— is essential for conscious pain. Opioid-type
analgesics (including morphine and codeine)
are the most effective type of painkiliers. They
block the receptors in brain neurcns novizally
be filled by enkephaling — the brain’s own
painkilling chemicals, which are released by
acute pain stimuli. Opicids also damp down
activity in the anterior cingulate cortex,

The importance of the anterior cingulate
cortex in pain perception is demonstraied
by brain scans showing that people with
cardiovascular disease appear to get angina —
the chest pains associated with lack of oxXygen
to the heart — only when the anterior cingu-
late cortex is active. In some people, it
seems, the anterior cingulate cortex lights
up as soon as the heart is short of OXYgen.
This creates conscious pain, warning them
to stop doing whatever is straining the heart.
In others the heart can bhe severely short
of oxvgen before the anterior cingulate cor-
tex is activated. These people can develop
potentially dangerous heart discase without
angina, making them vulnerable to surprise
heart attaclks,
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and pressure sensations from skin, muscles
and tendonsé), ﬁd motor information
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from the inner ear, Toget'her they amount

almost to a sixth sense. Proprioception uses

50 many different brain areas that it is very
rare for it to be lost altogether. Occasion- |
ally, though, people suffer brain injuries b

sensory

that so disturb proprioception that they lose

. . . information

all sense of having a body. Certain medita- from body
' tive states involve dissociating the conscious Y i
brain from proprioceptive input, inducing a feedback visuo-spatial |
feeli £ di bodiment and be o loop to information i 1
ecling of disembodiment and maybe give and from i
. the impression of floating or levitation. cerebellum signals from eyes’ |
: Out-of-body experiences, in which people :
report becoming detached from their bod- i
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due to temporary loss of proprioception.






