
Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

 Session 3547

Focusing on the Blurry Distinction between Microprocessors and Microcontrollers

J. T. Wunderlich
Elizabethtown College and Purdue University

Abstract

This paper compares microprocessors and microcontrollers in the context of teaching a sophomore level course
where students have completed previous studies in digital circuits and programming. Discussing the similarities
between these devices helps reinforce the understanding of the basic function of either device. Topics such as the
"fetch-decode-execute" of an instruction cycle, or the memory-mapping of I/O provide good examples of
similarities. Discussing the differences helps identify which device is most suitable for a given application. Topics
such as mathematical computation capabilities or the ability to contain all needed functionality on a single chip
provide good examples of differences. It is also important to study these devices in the context of historical trends
since today's microcontrollers have evolved from past microprocessors. The microcontroller of the future could
look more like today's microprocessors -- with a wider data bus, enhanced mathematical functionality, and
numerous speed-up schemes. However, many of the unique features of microcontrollers are unlikely to be found in
future microprocessors -- the separate memory for instructions and data is one example; the on-chip I/O control
features such as analog-to-digital conversion and pulse-width-modulated outputs are other examples. The
understanding of microprocessors and microcontrollers can also be enhanced by considering the differences
between how programmers and engineers may view these devices. For example, a device could be selected for the
programming power of the instruction-set, or for the simplicity of the instruction-set and minimization of
additional circuitry.

I. Introduction

 Teaching any subject in a historical context helps identify possible trends and focuses on fundamental
principles that do not change over time. Although electronic computing began in the 1940's, the first CPU (central
processing unit) packaged onto a single IC (integrated chip) was not available until 1971; it was the Intel 4004 4-
bit microprocessor [1], [2]. From this simple beginning, many different microprocessor and microcontroller
architectures have been developed. Today's typical Intel Pentium-based personal computer running Windows (i.e.,
"Wintel" machine) evolved from the Intel 4004 via the 8008, 8080, 8085, 286, 386, and 486 microprocessors.
Similar advances by other companies led to families of microprocessors built around completely different
instruction sets (e.g., Motorola 680xx family, Sparc family, etc.). The microprocessor typically studied in
undergraduate courses is either an Intel or Motorola device. This is also true for microcontrollers (with the Intel
8051 and Motorola 68HC11 families [1], [3]); however, there are also some very simple 8-bit microcontrollers
from other manufacturers that are gaining popularity -- with as few as 32 instructions and programmable with a
personal computer [4]. Analyzing the simplest devices can help identify the basic features needed to make any
microcontroller or microprocessor useful. Conversely, the study of high-end computer architectures can help
identify the "cutting-edge" features needed to sustain the ever-increasing demand for more processing power in
both microprocessors and microcontrollers.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

II. Microprocessor and Microcontroller Similarities

 Discussing the similarities between microcontrollers and microprocessors helps reinforce the understanding of
the basic function of either device. A good way to visualize this is by approximating a "minimal-computer-
architecture" common to both devices (see Fig. 1). This figure does not make a distinction between internal (on-
chip) and external (off-chip) buses or memory, code space vs. data space, etc. -- but does attempt to get across the
basic idea of how these devices function.

Figure 1. A "minimal-computer-architecture".

As shown in Fig. 1, each device contains:
- A program counter to address instructions to be fetched from memory.
- An instruction register to put the fetched instruction in.
- Control logic to create all routing signals after decoding the fetched instruction.
- An ALU for arithmetic and logical manipulation of data and addresses.
- Registers for storing intermediate results of calculations.
- A status register for status flags and condition codes.
- Memory for storing data and instructions.
- A stack for storing addresses (or processor status) for returning from program-calls (or interrupts).
- I/O which is addressed as memory (i.e., memory-mapped I/O).

 Although the number of stages in an instruction cycle is device-dependent and can vary significantly, the fetch,
decode, and execute stages are common to most microcontrollers and microprocessors. Whether instruction code is
stored in internal (on-chip) or external (off-chip) ROM or RAM, it must be fetched via a data bus after being
pointed to by a program counter which puts a memory address on an address bus. Both devices have instructions
identified by op-codes which must be decoded during a decode phase; and each device has at least one execution
phase where most control-actions are carried out. Additionally, both devices typically have a write-back phase for
instructions that store ALU results into memory.

III. Microprocessor and Microcontroller Differences

 Discussing the differences between microcontrollers and microprocessors helps identify which device is more
suitable for a given application. A good way to examine differences is by working from the same "minimal-
computer-architecture" shown above. One major difference is in how instructions and data are stored in memory,
and where the memory is physically located. For typical microprocessors, all memory is located off-chip (with the
exception of some caches) -- with a ROM used to permanently store instructions such as a bootstrap program to
start-up the system, and RAM used to store data and all other instructions (i.e., "Von Neumann" architecture). For
many microcontrollers, there is ROM and RAM on the chip, address-space for additional ROM and RAM off-
chip, and registers and a stack that can be addressed as internal RAM. Also, instructions and data are stored
separately (i.e., "Harvard" architecture); the ROM is used to contain all instructions upon completion of code
development, and the RAM is used to store data. However, during code development the RAM can be used to store

Register
Bank Arithmetic

Logic Unit

 Program Counter

DATA BUS

ADDRESS BUS

Input
and

Output
Memory

Instruction
Register

Control
Logic

data

data
address

instruction
address

Status Register

Stack

increment

Registers

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

both code and data. This architecture is well suited for embedded applications where the code is fixed (i.e., burned
into ROM). Having on-chip RAM also helps allow the microcontroller to be embedded as a single-chip computer.

In microprocessors, on-chip and off-chip caches (and often separate caches for data and instructions) are used
to speed-up processing. These memories are made from fast static-RAM (i.e., faster, but more expensive and with
less transistor-density than dynamic-RAM), and contain most-recently-used data and instructions (which are
statistically more likely to be needed).

Both microcontrollers and microprocessors have a program counter to address instructions to be fetched from
memory. However, the calculation of instruction addresses can be significantly more complex in microprocessors;
with the target-addresses of branch instructions being prefetched using branch-prediction strategies; and with
several levels of address translation required to get real RAM addresses from virtual addresses when the address
space is not directly mapped to the actual available RAM.

Both devices have an instruction register to receive fetched instructions, and circuitry to decode instruction op-

codes, however the control logic to create all routing signals is more complex for microprocessors which have more
powerful instruction sets -- with fancier addressing modes and many instructions. The only exception to this is
RISC microprocessors (i.e., Reduced Instruction-Set Computer) where intentionally simple instruction-sets and
addressing modes are developed as part of the overall speed-up scheme for the processor [5]. Although
microcontrollers have simple instruction-sets, they do not typically have other features needed to classify them as
RISC devices (e.g., fixed instruction-length formats). They do however have on-chip RAM and several general-
purpose register banks which allow faster access of data than off-chip memory-accesses -- and this has the same
effect as the large register-sets found on RISC chips. Both devices have a stack for storing addresses (or processor
status) for returning from program-calls (or interrupts), however microprocessors often have two stacks: a general-
purpose user-stack, and a system-stack that requires privileged instructions to access [6].

 The evolution of microprocessors (as well as more complex high-performance machines) has led to many
advances in computer architecture to speed-up processing; this has included much more than increasing processor
clock speed. The time to execute a program can be represented by:

τ*)(* cICPIT = (1)

 whereτ is the clock period in seconds per cycle (i.e., 1/frequency), Ic is the number of machine instructions in

a given code segment, and CPI (cycles per instruction) is the average time to fetch, decode, execute, and store
results for each instruction [5]. There are many strategies to decrease CPI ; for example, processing several
instructions simultaneously (i.e., superscalar), or moving data directly between I/O and memory (i.e., Direct
Memory Access). Hardware to anticipate and take "pre-actions" has been a design concept for many years. This not
only includes prefetching data and instructions in caches, but also prefetching branch-target addresses using
Branch History Tables, or caching virtual address translations using Translation Lookaside Buffers. Other speed-
up techniques include re-ordering and optimizing instruction streams as they come into the CPU (i.e., out-of-order
execution), or overlapping the individual instruction-cycle phases of many instructions (i.e., super-pipelined).
Many of these advances will eventually work their way into microcontroller architectures, however features
designed to handle large address spaces are less likely to be needed for microcontroller applications.

 Although both devices have an ALU for integer arithmetic and logical manipulation of data, microprocessors
are much better suited for "number-crunching", and usually have a wider data bus and larger general-purpose
registers to accommodate this. Microcontrollers are typically limited to 8-bit or 16-bit number representations
(even though 32-bit microcontrollers are available); whereas microprocessors usually allow 32-bit representations,
and contain additional floating-point hardware to allow arithmetic using much larger number ranges (and
therefore much greater precision). Table 1 shows the available number range for different integer number
representations.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

Table 1. Number range for different integer number representations.

 One might argue that 8-bit microcontrollers are capable of manipulating large number ranges by simply
parsing and manipulating large numbers using 8-bit quantities; however, as shown in Fig.'s 2 and 3, even a simple
operation like decrementing a 16-bit number until it equals another 16-bit number can be much more tedious using
8-bit arithmetic. Even if the 8051 microcontroller programming effort in Fig. 3 was avoided by programming in a
high-level language (e.g., C), the resulting machine code after compilation would still require many more bytes
than if 16-bit registers where available (i.e., 22 vs. 8 for these examples). The limited 8051 instruction-set also
contributes to the many lines of code needed in Fig. 3; the accumulator must be used to receive all results from the
ALU, therefore forcing intermediate results to be moved in and out of the accumulator (i.e., at lines #8 and #11);
whereas a typical microprocessor will have many register-to-register instructions, allowing intermediate results of
computations to be left in several register locations (see MC68000 code in Fig. 2)[6]. Although large program
size is not usually a problem for microprocessor systems, it can be a problem for microcontrollers which can have
limited space for code (i.e., in ROM) -- especially if all of the code is to fit in the on-chip ROM.

Figure 2. Example MC68000 microprocessor program using 16-bit arithmetic to do a 16-bit task; Decrement the 16-bits in
general-purpose data register D0 until it reaches the 16-bit number in general-purpose data register D2.

 # OF # OF
 LINE BYTES CYCLES
 01 check: CMP.W D0, D2 ; compare D0 and D2, set appropriate condition flag 2 4
 02 DBE D0, check ; decrement, and jump to " check " until D0 and D2 equal 4 10 to 12
 03 done: NOP ; program finished 2 4
 =====
 TOTAL = 8

Figure 3. Example 8051 microcontroller program using 8-bit arithmetic to do a 16-bit task; Decrement the 8-bit general-
purpose registers R1 and R0 as one concatenated 16-bit number until it reaches the 16-bit number made by concatenating
the contents of the 8-bit general-purpose registers R3 and R2.

 # OF # OF
 LINE BYTES CYCLES
 00 check: MOV A, R0 ;put low-order byte in accumulator 1 1
 01 CJNE A, 02h, dcrmnt ;conditional jump to "dcrmnt" if not equal to R2 contents 3 2
 02 MOV A, R1 ;put high-order byte in accumulator 1 1
 03 CJNE A, 03h, dcrmnt ;conditional jump to " dcrmnt " if not equal to R3 contents 3 2
 04 SJMP done ;countdown finished, jump to "done" 2 2
 05 dcrmnt: MOV A, R0 ;put low-order byte in accumulator 1 1
 06 CLR C ;must clear carry flag since used in subtraction 1 1
 07 SUBB A, #01h ;decrement (and possibly set borrow) 2 1
 08 MOV R0 ,A ;temporarily store new high-order byte in R0 1 1
 09 MOV A, R1 ;put high-order byte in accumulator 1 1
 10 SUBB A, #00h ;subtract borrow (i.e., carry bit is set if borrow at line #07) 2 1
 11 MOV R1 ,A ;temporarily store new high-order byte in R1 1 1
 12 SJMP check ;jump to "check " 2 2
 13 done: NOP ;program finished 1 1
 =====
 TOTAL = 22

8-bit unsigned: 0 to (2^8)-1 = 0 to 255
8-bit signed: -(2^8)/2 to ((2^8)/2)-1 = -128 to 127

16-bit unsigned: 0 to (2^16)-1 = 0 to 65,535
16-bit signed: -(2^16)/2 to ((2^16)/2)-1 = -32,768 to 32,767

32-bit unsigned: 0 to (2^32)-1 = 0 to 4,294,967,295
32-bit signed: -(2^32)/2 to ((2^32)/2)-1 = -2,147,483,648 to 2,147,483,647

n-bit unsigned: 0 to (2^n)-1
n-bit signed: -(2^n)/2 to ((2^n)/2)-1

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

One strength of microcontrollers is their on-chip RAM which allows faster memory access and therefore fewer
cycles per instruction. This is illustrated in Fig.'s 4 and 5. Although the MC68000 microprocessor code of Fig. 4
requires less bytes, it must access the off-chip RAM for reading and writing the initial and final count; this is
significantly slower than manipulating on-chip RAM. However, the overall speed of the MC68000 microprocessor
code in Fig. 4 would be as fast as the 8051 microcontroller code of Fig. 5 if the difference between the initial count
and the desired count was large enough (assuming equal clock speeds). The above discussion can be easily
extended to a comparison of 16-bit and 32-bit devices (i.e., when doing 32-bit arithmetic).

Figure 4. Example MC68000 microprocessor program using 16-bit arithmetic to do a 16-bit task; Decrement the 16-bits at
RAM location 2000h until it reaches the 16-bit number in general-purpose data register D2; then store count back into
memory.

 # OF # OF
 LINE BYTES CYCLES
 00 MOVE.W $2000, DO ; copy original count into register D0 from RAM (off-chip) 4 12
 01 check: CMP.W D0, D2 ; compare D0 and D2, set appropriate condition flag 2 4
 02 DBE D0, check ; decrement, and jump to " check " until D0 and D2 equal 4 10 to 12
 03 MOVE.W D0, $2000 ; write count to RAM (off-chip) from D0 4 12
 04 done: NOP ; program finished 2 4
 =====
 TOTAL = 16

Figure 5. Example 8051 microcontroller program using 8-bit arithmetic to do a 16-bit task; Decrement the 8-bit contents of
internal RAM addresses 21h and 20h as one concatenated 16-bit number until it reaches the 16-bit number made by
concatenating the contents of the 8-bit general-purpose registers R3 and R2 [2].

 # OF # OF
 LINE BYTES CYCLES
 00 check: MOV A, 20h ;get low-order byte from on-chip RAM 2 1
 01 CJNE A, 02h, dcrmnt ;conditional jump to "dcrmnt" if not equal to R2 contents 3 2
 02 MOV A, 21h ;get high-order byte from on-chip RAM 2 1
 03 CJNE A, 03h, dcrmnt ;conditional jump to " dcrmnt " if not equal to R3 contents 3 2
 04 SJMP done ;countdown finished, jump to "done" 2 2
 05 dcrmnt: MOV A, 20h ;get low-order byte from on-chip RAM for decrementing 2 1
 06 CLR C ;must clear carry flag since it is used as a borrow 1 1
 07 SUBB A, #01h ;decrement (and possibly set borrow) 2 1
 08 MOV 20h ,A ;store new high-order byte in on-chip RAM 2 1
 09 MOV A, 21h ;get high-order byte from on-chip RAM for decrementing 2 1
 10 SUBB A, #00h ;subtract borrow (i.e., carry bit is set if borrow at line #07) 2 1
 11 MOV 21h ,A ;store new low-order byte in on-chip RAM 2 1
 12 SJMP check ;jump to "check " 2 2
 13 done: NOP ;program finished 1 1
 =====
 TOTAL = 28

 Probably the most defining characteristic of microcontrollers is the on-chip circuitry for interfacing with
external devices. This includes watchdog timers, analog-to-digital and digital-to-analog converters (ADC's and
DAC's), pulse-width-modulated (PWM) outputs for driving motors, and many counters for timing and control.
These circuits are not typically found on microprocessors.

 The microcontroller is best suited as an embedded single-chip computer for controlling peripheral devices,
whereas the microprocessor is best suited for relatively high-speed general-purpose computing, high-precision
math-intensive applications (e.g., multimedia, scientific simulations, etc.), or programming which makes use of
large address spaces. However, as the number of features that can fit on a single chip increases, the microcontroller
and microprocessor of the future could be packaged as a single device -- a single-chip computer with all the
advantages of both, where the engineer or programmer could select which features to use. Although this might
seem wasteful, mass production could make these devices inexpensive enough to justify this strategy.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

IV. Different Perspectives

 The understanding of microprocessors and microcontrollers can also be enhanced by considering the
differences between how programmers and engineers may view these devices. The complex instruction-set and
addressing modes of most microprocessors might be considered a big advantage by systems-level programmers
who are willing (and able) to make use of these features -- this bias may even outweigh the on-chip features of
microcontrollers. For example, if a microprocessor or microcontroller needed to be chosen for an application
requiring analog numbers to be read into the device, then manipulated using 16-bit arithmetic, then displayed on
analog meters, the programmer might decide that the code could be most effectively written for a 16-bit
microprocessor and therefore not choose a 16-bit microcontroller with built-in analog-to-digital (ADC) and digital-
to-analog (DAC) converters, on-chip ROM that might fit all the code, and on-chip RAM. An engineer however
might choose a 16-bit microcontroller because of the simpler instruction-set (even though more lines of program
code might be required), or because the on-chip features eliminate the need to design board-level circuits to handle
analog conversions and communication between the CPU and memory.

 V. Laboratory Experiments

 Most courses in microprocessors or microcontrollers can benefit from laboratory experiments. Appendix A. lists
the laboratory projects used for a Purdue University sophomore microcontroller course [8]. These labs use an 8051
microcontroller-based test computer (the PU-552), and monitor program developed in the Purdue University
Electrical and Computer Engineering Technology Department [2], [8]. If a microprocessor-based development
system is used, some of the device-control type labs can be replaced with, for example, floating-point arithmetic
exercises. The programming language used for the labs in Appendix A. is mostly 8051 Assembly -- however C
programming is also required for several labs. Students can also benefit from comparing code written in both C
and Assembly for the same task.

 The typical undergraduate course in microprocessors or microcontrollers requires prerequisite studies in digital
circuits. The lab project shown in Fig. 6 can be used in a prerequisite digital-design course to introduce the control
and flow of data in a microprocessor or microcontroller.

VI. Conclusions

 A good way to learn the differences between microprocessors and microcontrollers is to work from a "minimal-
computer-architecture" common to both. This reinforces the understanding of basic computer architecture
fundamentals, and isolates device differences so they can be easily identified. Discussing differences also helps
identify which device is most suitable for a given application. Topics such as mathematical capabilities or the
ability to contain all needed functionality on a single chip provide important examples of differences.

 Teaching any subject in a historical context helps identify trends, and focuses on fundamental principles that do
not change over time. Since the beginning of the packaged CPU in 1971, the evolution of microprocessors has led
to many advances in computer architecture; many of which will eventually work their way into microcontrollers.
Future microcontrollers could look like today's microprocessors -- with enhanced mathematical functionality, and
numerous instruction speed-up schemes; however, some of the peripheral-control features of microcontrollers are
unlikely to be found in future microprocessors. It may also become possible that as the number of features that can
fit on a single chip increases, future microcontrollers and microprocessors could be packaged as a single device -- a
single-chip computer with all the advantages of both, where the engineer or programmer could select which
features to use.

 The understanding of microprocessors and microcontrollers can also be enhanced by considering the
differences between how programmers and engineers may view these devices. For example, a device could be
selected for the programming power of the instruction-set, or for the simplicity of the instruction-set and
minimization of additional circuitry.

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

Appendix A.

Laboratory projects used for a Purdue University Electrical and Computer Engineering Technology microcontroller
course [8]:

 1. Equipment orientation and I/O with C 8. Parallel I/O and C program development
 2. Monitor program and program execution 9. Keypad and 7-segment LED displays
 3. Bus cycle timing analysis 10. Serial I/O
 4. Memory and I/O expansion 11. ADC’s and DAC's
 5. Move instructions and hand assembly 12. Stepper motors and Digitalkers
 6. Branching and math instructions 13. Individual projects
 7. Timing loops 14. Lab practical exam

Appendix B.

Figure 6 shows a digital-design course laboratory project to introduce the control and flow of data in a
microprocessor or microcontroller. The counters are analogous to timers in a microcontroller or general-purpose
registers used as counters in a microprocessor. The select line to the multiplexer can represent a control-logic
signal generated after decoding the op-code; the comparator can represent a simplified arithmetic logic unit
(ALU); and the L.E.D. circuits controlled by the comparator output can represent the contents of a status register.
A variation of this lab can be made by replacing the comparator with a 2-bit parallel adder.

Figure 6. A simple digital-design course laboratory project to introduce the control and flow of data in a
microprocessor or microcontroller.

PULSE 1
(DEBOUNCED PUSH-BUTTON)

 PULSE 2
(DEBOUNCED PUSH-BUTTON)

2 2 2

2-BIT
 UP-COUNTER

WHICH RESETS
TO 00

AFTER 11

 SELECT

 # # #

2-BIT
DOWN-COUNTER

WHICH SETS
TO 11

AFTER 00

MULTIPLEXER

COMPARATOR
 X<Y X=Y X>Y

2 L.E.D. 's L.E.D.

X

OP-CODE OPERAND (TOGGLE SWITCHES)

2 L.E.D. 's

2 L.E.D. 's

1

2

2 2

2

Instruction Set:
(OP-CODE=1): Compare operand to up-counter count
(OP-CODE=0): Compare operand to down-counter count

L.E.D.

L.E.D.

Y

Proceedings of the 1999 American Society for Engineering Education Annual Conference & Exposition
 Copyright 1999, American Society for Engineering Education

References

[1] K. J. Ayala, "The 8051 Microcontroller", 2nd ed., Minneapolis, MN: West Publishing, 1997.

[2] R. H. Barnett, "The 8051 Family of Microcontrollers", Englewood Cliffs, NJ: Prentice Hall, 1995.

[3] M. Kheir, "The M68HC11 Microcontroller", Upper Saddle River, NJ: Prentice Hall, 1997.

[4] J. B. Peatman, "Design with PIC Microcontrollers", Upper Saddle River, NJ: Prentice Hall, 1998.

[5] K. Hwang, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", McGraw-Hill,

1993.

[6] T. L. Harman and B. Lawson, "The Motorola 68000 Microprocessor Family", Englewood Cliffs, NJ:

Prentice Hall, 1985.

[7] G. G. Langdon, " Computer Design", San Jose, CA: Computeach Press, 1982.

[8] N. S. Widmer, "Introduction to Microprocessors Laboratory Manual", West Lafayette, IN: Learning

Systems, 1998.

	Session 3547
	III. Microprocessor and Microcontroller Differences

