
IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
• RANDOM NUMBER GENERATORS
• Programmers have the option of using seven different random number
• generators for "PASSGEN() 'S" (i.e., ?GENBITS, ?GENRNG, ?GENCHAR,

?GENDEC, and ?GENFLOAT); And four different generators for ?GENSEED.

• Below is the rationale for which to choose.

• TERMINOLOGY:
• SEEDGEN= Random number generator used for ?GENSEED (i.e.,the
• "seed generator" used as the ?GENSEED ALGORITHM)
• PASSGEN= Random number generator used for ?GENBITS,?GENRNG,
• ?GENDEC,?GENCHAR, AND ?GENFLOAT. (i.e.,the "pass
• generator")
• LCG= Linear Congruent Generator
• CLCG= Combined Linear Congruent Generator
• LFG= Lagged Fibonacci Generator
• A= Forward multiplier for LCG's
• B= Backward multiplier for LCG's
• C= Additive constant for LCG'S

• X{I}= Present seed
• X{I-1}= Previous seed
• Q= Special "decomposition" variable for LCG's
• R= Special "decomposition" variable for LCG's
• M= Modulus
• M_CLCG= Modulus for CLCG
• J= Lag for LFG'S (the longer one)
• K= Lag for LFG'S
• X{I-J}= Previous {I-J} seed from LFG seed array
• X{I-K}= Previous {I-K} seed from LFG seed array
• OPERTR= The arithematic operator used for the LFG (+,OR *)
• PERIOD= How many numbers generated before sequence
• repeats (i.e.,the cycle-length)

•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• LINEAR CONGRUENT GENERATORS (LCG)
• *********************************
• LCG's are designated as LCG(A,C,M), and have a period
• equal to M, M/2, M/4, or M/8. LCG's have the form:
• X{I} = (((A)*X{I-1})+C)//M FOR FORWARD STEPPING
• X{I-1} = (((B)*X{I}) +C)//M FOR BACKWARD STEPPING
• However, the intermediate products A*X{} and B*X{} must
• be kept from creating 32-bit overflow (unless M=2**32
• where the //M can just be ignored). If overflow can't be
• prevented, 64-bit simulated arithmetic must be used to
• include the overflow. To prevent overflow, a "decomposed"
• form of the above equation (if possible) must be used:

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• FORWARD:
• Q=M/A
• R=M//A
• IF (A*(X{I-1}//Q) - A*(X{I-1}/R)) > 0
• X{I}= A*(X{I-1}//Q) - A*(X{I-1}/R)
• ELSE
• X{I}=(A*(X{I-1}//Q) - A*(X{I-1}/R))+M
• BACKWARD:
• Q=M/B
• R=M//B
• IF (B*(X{I}//Q) - B*(X{I}/R)) > 0
• X{I-1}= B*(X{I}//Q) - B*(X{I}/R)
• ELSE
• X{I-1}=(B*(X{I}//Q) - B*(X{I}/R))+M
• But this only works if Q > R which is rare (for example,
• only 23,000 of the 4,000,000,000 32-bit LCG multipliers
• satisfy this. And finding a LCG with both backward and
• forward multipliers that satisfy this seems unlikely.
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• COMBINED LINEAR CONGRUENT GENERATORS (CLCG)
• ***
• CLCG'S are made from two LCG's and have a period
• of (M1-1)*(M2-1)/2. They have the form:
• X{I} = ((LCG(A1,C1,M1)+
• (LCG(A2,C2,M2))//M_CLCG FORWARD
• X{I-1} = ((LCG(B1,C1,M1)+
• (LCG(B2,C2,M2))//M_CLCG BACKWARD
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• LAGGED FIBONACCI GENERATORS (LFG)
• *********************************
• LFG'S are designated as LFG(J,K,M,OPERTR), and have a
• period of:
• ((2**J)-1)*(2**(LOG2(M)-1)) for the + operator
• and ((2**J)-1)*(2**(LOG2(M)-3)) for the * operator
• LCG's have the form:
• X{I} = (X{I-J} OPRERTR X{I-K})//M FORWARD ONLY
• NO BACKWARDS YET
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• GOOD GENERATOR PROPERTIES ARE:
• A) Has been used for at least several years in industry or
• academia (i.e., well tested over time).
• B) Produces a string of numbers which approximates an independent
• and identically distributed source (I.I.D.). Independent means
• the probability of a number being generated is independent of
• when others generated (i.e., no conditional dependence).
• Identically distributed means all numbers have an equal
• probability of being generated (i.e.,a uniform distribution).
• For independence, rely on documented testing in the published
• literature.
• For identically distributed, additional testing was done to
• examine the bit uniformity of each generated 32-bit word for
• each generator; only the "best" bits are used when using a
• generator as a pass generator. The entire word is used when
• using a generator as a seed generator.
• C) Long periods (i.e.,want many numbers to be produced before
• generator starts over). "Cycle" and "period" are synonymous.
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• D) Can generate non-overlapping segments. Each SAK program pass
• causes a string (a segment) of numbers to be generated by the
• pass generator (assuming the program contains some PASSGEN() 's).
• Non-overlapping segments means no significant part of any
• two segments will be identical. The generator's period can be
• broken into non-overlapping segments.
• This is only possible using the "FIBP" generator. However,
• any generator with a large enough period will most likely
• produce mostly non-overlapping segments for a typical set of
• SAK program passes. For example, a program with 100 PASSGEN() 's
• will use a segment of maybe 500 numbers; and if
• you run the program 100,000 passes, you have a total of
• 50,000,000 numbers used. Even generators with relatively
• small periods of 500,000,000 would use only 10% of their
• period for this example. There would be some overlapping
• segments -- but maybe not an undesirable amount. This example
• assumes relatively small PASSGEN() target lengths -- large
• ?GENBITS targets could lead to many over-lapping segments,
• but this might be acceptable for some applications.

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• E) Execution speed (both to startup and to run). SAK programs with
• many PASSGEN() 's or long PASSGEN() targets are referred to as
• "LONG RUNS" below. Some generators are not well suited for
• "SHORT RUNS" because of high initialization costs.
• F) May want no repeats of a number within a seed generator's
• cycle (i.e.,period) since a repeating base seed means
• an identical pass is generated (however, since preceding
• and following passes are most likely different, a different
• machine state may be tested). Repeating numbers are ok
• for pass generators -- only repeating sequences need to be
• avoided.
• G) Minimal seed memory requirements (i.e., more seeds means more
• overhead and record keeping).
• H) Minimal restrictions on initial seed.
• I) Reversibility. The seed generator for SAK must go backwards;
• and the pass generator used by the PASSGEN() 'S is sometimes
• desired to go backwards.

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• J) Repeatability. This is required for debugging. All of the
• generators below provide repeatability (both individually
• and when combined).
• The following seed and pass generators can be specified when
• using ?GENSEED, ?GENBITS, ?GENRNG, ?GENCHAR, ?GENDEC, or
• ?GENFLOAT.
• (#1)to(#4) can be used as either a seed or pass generator.
• (#5)to(#7) can only be used for a pass generator since they are
• not yet reversible.
• "MINSTD"(#4) is the default seed generator used by ?GENSEED.
• "RANDU" (#2) is the default pass generator used by ?GENBITS,
• ?GENRNG, ?GENDEC, ?GENCHAR, and ?GENFLOAT (i.e.,THE PASSGEN()'S)

• If (#1,#3,#4,#5,#6,or #7) is specified by ?GENSEED as the default
• pass generator, that will be the default for all PASSGEN() 'S. A
• PASSGEN() can however change the pass generator for one invocation.
• Generator qualities have been subjectively graded below
• from A+ TO F:

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• 1) "OGSD" (OLD GENSEED)
• ********************
• FORWARD DESIGNATION: NONE, IT'S HOME-MADE
• BACKWARD DESIGNATION: NONE, IT'S HOME-MADE
• IID(OF 32-BIT WORDS).....?
• UNIFORMITY(BITS USED FOR PASSGEN).8:15(1 BYTE)
• PERIOD............................2**26
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................A
• "SHORT" RUN SPEED.................D
• "LONG" RUN SPEED..................D
• REPEATS NUMBER WITHIN PERIOD......NO
• NUMBER OF SEEDS...................1
• RESTRICTIONS ON INITIAL SEED......NOT(0, EVEN, DIVISIBLE BY 5)

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• 2) "RANDU"
• *******
• FORWARD DESIGNATION: LCG(65539,0,2**32)
• BACKWARD DESIGNATION: LCG(477211307,0,2***32)
• IID(OF 32-BIT WORDS).....D
• UNIFORMITY(BITS USED FOR PASSGEN).8:15(1 BYTE)
• PERIOD............................2**29
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................A+
• "SHORT" RUN SPEED.................A+
• "LONG" RUN SPEED..................A+
• REPEATS NUMBER WITHIN PERIOD......NO
• NUMBER OF SEEDS...................1
• RESTRICTIONS ON INITIAL SEED......NOT 0 OR EVEN

•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

• NOTES:
• Derived in the 1970's by someone in SAK to be reversible
• and not create overflow. It was the SAK seed generator for
• 25 years. It has the following non-standard form:
• FORWARD:
• IF X{I-1}//2=0 THEN
• X{I}=X{I-1}+'124C41'X
• IF X{I-1}//5=0 THEN
• X{I}=X{I-1}+2
• X{I}=((X{I-1}//1000000000)*31627)//1000000000
• BACKWARD:
• IF X{I-1} IS EVEN THEN
• X{I}=X{I-1}+'124C41'X
• IF X{I-1}//5=0 THEN
• X{I}=X{I-1}+2
• X{I}=((X{I-1}//1000000000)*43222563)//1000000000

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

3) "IMPRV" (AN IMPROVED RANDU-TYPE GENERATOR)
• **
• FORWARD DESIGNATION: LCG(71365,0,2**32)
• BACKWARD DESIGNATION: LCG(814217229,0,2***32)
• IID(OF 32-BIT WORDS).....B-
• UNIFORMITY(BITS USED FOR PASSGEN).8:15(1 BYTE)
• PERIOD............................2**29
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................A+
• "SHORT" RUN SPEED.................A+
• "LONG" RUN SPEED..................A+
• REPEATS NUMBER WITHIN PERIOD......NO
• NUMBER OF SEEDS...................1
• RESTRICTIONS ON INITIAL SEED......NOT 0 OR EVEN

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

4) "MINSTD" ("MINIMUM-STANDARD" VER. #2)
• *************************************
• FORWARD DESIGNATION: LCG(48271,0,(2**31-1))
• BACKWARD DESIGNATION: LCG(1899818559,(2***31-1))
• IID(OF 32-BIT WORDS).....B
• UNIFORMITY(BITS USED FOR PASSGEN).8:31(3 BYTES)
• PERIOD............................2**31
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................A
• "SHORT" RUN SPEED.................B
• "LONG" RUN SPEED..................B
• REPEATS NUMBER WITHIN PERIOD......NO
• NUMBER OF SEEDS...................1
• RESTRICTIONS ON INITIAL SEED......NOT 0

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

NOTES:
• FORWARD:
• Using decomposed form to prevent 32-bit overflow with:
• Q=44488,R=3399
• BACKWARD:
• Using simulated 64-bit arithmetic to handle 32-bit overflow
• since Q^>R for reverse multiplier.
• This generator is the default SAK pass generator.
• Minimum Standard versions #2 and #3 are more random than
• version #1. Version #1 is the original Minimum Standard from
• the 1960's. All three versions are in "GENTAB COPY" (with
• backwards multipliers).

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

5) "CLCG" (COMBINES TWO LCG'S)
• ***************************
• FORWARD DESIGNATION #1: LCG(40014,0,2147483563)
• BACKWARD DESIGNATION #1: LCG(2082061899,2147483563)
• FORWARD DESIGNATION #2: LCG(40692,0,2147483399)
• BACKWARD DESIGNATION #2: LCG(1481316021,2147483399)
• IID(OF 32-BIT WORDS).....B+
• UNIFORMITY(BITS USED FOR PASSGEN).8:31(3 BYTES)
• PERIOD............................2**63
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................A
• "SHORT" RUN SPEED.................B-
• "LONG" RUN SPEED..................B-
• REPEATS NUMBER WITHIN PERIOD......YES
• NUMBER OF SEEDS...................2
• RESTRICTIONS ON INITIAL SEED......NOT 0
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

NOTES:
• FORWARD:
• Using decomposed form to prevent 32-bit overflow with:
• Q1=53668,R1=12211 Q2=527744,R2=3791
• BACKWARD:
• Using simulated 64-bit arithmetic to handle 32-bit overflow
• since Q^>R for reverse multiplier.
• During initialization, the base seed created by ?GENSEED
• is used as the initial seed for both constituent generators.
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

6) "FIBM" (LAGGED FIBONACCI USING MULTIPLICATION)
• **
• FORWARD DESIGNATION: LFG(55,24,2**32,+)
• BACKWARD DESIGNATION: NOT YET DERIVED
• IID(OF 32-BIT WORDS).....A+
• UNIFORMITY(BITS USED FOR PASSGEN).7:30(3 BYTES)
• PERIOD............................2**83
• OVERLAPPING SEGMENTS..............YES
• STARTUP SPEED.....................C+
• "SHORT" RUN SPEED.................B-
• "LONG" RUN SPEED..................A-
• REPEATS NUMBER WITHIN PERIOD......YES
• NUMBER OF SEEDS...................55
• RESTRICTIONS ON INITIAL SEEDS.....SEE NOTES
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

NOTES:
• Two seeds must be updated in the seed table each PASSGEN()
• invocation, and the seed table must be initialized for
• each pass. The initialization requires filling the seed
• table with random values using another generator, then
• make all entries odd.

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

7) "FIBP" (LAGGED FIBONACCI USING ADDITION)
• **
• FORWARD DESIGNATION: LFG(521,168,2**32,+)
• BACKWARD DESIGNATION: NOT YET DERIVED
• IID(OF 32-BIT WORDS).....A
• UNIFORMITY(BITS USED FOR PASSGEN).7:30(3 BYTES)
• PERIOD............................2**531
• OVERLAPPING SEGMENTS..............NO
• STARTUP SPEED.....................D
• "SHORT" RUN SPEED.................C+
• "LONG" RUN SPEED..................A-
• REPEATS NUMBER WITHIN PERIOD......YES
• NUMBER OF SEEDS...................521
• RESTRICTIONS ON INITIAL SEEDS.....SEE NOTES

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

NOTES:
• Two seeds must be updated in the seed table each PASSGEN()
• invocation, and the seed table must be initialized for
• each pass. The initialization requires filling the seed
• table with random values using another generator, then
• to get a unique non-overlapping segment of the
• generator's cycle (i.e., to get the most uncorrelated
• program passes), the initial array must also be put into
• a "CANONICAL FORM". This is only possible for certain J,K
• pairs and is made by shifting left (zero into the LSB),
• clear the sign bit, then zero the entire last entry, then
• the LSB for one or two special entries is set on:
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

JK-PAIR ENTRY
• ---------------
• 3,2 1
• 5,3 2,3
• 10,7 8
• 17,5 11
• 35,2 1
• 55,24 12
• 71,65 2
• 93,91 2,3
• 127,97 22
• 158,128 64
• 521,168 88 (THIS IS THE J,K PAIR CHOSEN FOR SAK by J. W.)

•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

SUMMARY OF GENERATORS:
• *********************
• OGSD RANDU IMPRV MINSTD CLCG FIBM FIBP
• WORD IID ? D B- B B+ A+ A

BITS USED (PASSGEN()) 8:15 8:15 8:15 8:31 8:31 7:30 7:30

• PERIOD 2**26 2**29 2**29 2**31 2**63 2**83 2**531

• OVERLAPPING Y Y Y Y Y Y N

• STARTUP SPEED A A+ A+ A A C+ D

• "SHORT" RUN SPEED D A+ A+ B B- B- C+

• "LONG" RUN SPEED D A+ A+ B B- A- A-

• REPEATS IN PERIOD N N N N Y Y Y

• NUMBER OF SEEDS 1 1 1 1 2 55 521

• SEED RESTRICTIONS MANY >0,ODD >0,ODD >0 >0 MANY MANY

•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

"CONTROLLED RANDOMNESS"
• ***********************
• The overall "RANDOM BACKBONE" of a succession of passes can be
• controlled through the selection of seed and pass generators.
• For example,
• For filling large data area's or
• for programs with few PASSGEN() 'S,
• Choose: SEEDGEN="MINSTD"
• PASSGEN="IMPRV"
• for very fast, reversible passes, a single seed, and
• ok randomness; but small period and overlapping segments.
• For programs with many PASSGEN() 'S (some reversible),
• Choose: SEEDGEN="MINSTD"
• PASSGEN="CLCG"
• for very random, reversible PASSGEN() 'S, and big period; but
• overlapping segments and two seeds to handle.
•

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

For programs with many PASSGEN() 'S (none reversible),
• Choose: SEEDGEN="MINSTD"
• PASSGEN="FIBP"
• for the ultimate in non-correlated passes (i.e.,very good
• word independence and non-overlapping segments); but not
• reversible PASSGEN() 'S and 521 seeds.
•
• For any program where intentional lack of randomness and high
• correlation between passes is desired,
• Choose: SEEDGEN="OGSD"
• PASSGEN="OGSD"
• OR
• Choose: SEEDGEN="RANDU"
• PASSGEN="RANDU"
• This may closely simulate actual code execution (i.e.,lack
• of randomness and interdependence between passes may
• sometimes be a good thing!).

IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997

Controlled Randomness

RANDOM NUMBER GENERATORS
FOR

ARCHITECTURAL VERIFICATION TEST-PROGRAMS
J. T. Wunderlich, Ph.D.

AGENDA

• PSEUDO-RANDOM PROGRAMS
• IDEAL GENERATOR
• GENERATOR TYPES
• GENERATOR QUALITY
• PARALLEL STRATEGIES
• SELECTED GENERATORS
• CONTROLLED RANDOMNESS
• IMPLEMENTATION

Appendix: IBM PRESENTATION
1997

Controlled Randomness

RANDOMLY INITIALIZE ALL DATA
USED BY PROGRAM (using Ui 's)

RANDOMIZE ALL DECISION CRITERIA
USED TO CONTROL PROGRAM FLOW

(using Ui 's)

U0

CHANGE U0

Ui = Randomly generated number

PROGRAM EXECUTION

Controlled Randomness Execution of one program

G

INITIAL
SEED

U0 GG

Ui+1Ui

GG

Ui+3Ui+2

= "PASS"

Parallel Program ExecutionSYSTEM CLOCK
(V0)

Gs

Gs

U0 =Vj+1

U0 =Vj

Gs

Gs U0 =Vj+n

U0 =Vj+2

GG

Ui+1Ui

GG

Ui+3Ui+2

GG

Ui+1Ui

GG

Ui+3Ui+2

Program Execution Number 1

Program Execution Number N

Gs = SEED GENERATOR
G = PASS GENERATOR

Controlled Randomness IDEAL GENERATOR

IDEAL GENERATOR

• (IID) Independent AND Identically Distributed

• Identically Distributed: all numbers have equal probability of occurring

• Independent: probability of number being generated is independent of when other
numbers generated. And therefore, P(A,B, . . . n) = P(A) * P(B) * . . . * P(n)

• LONG PERIOD (i.e., numbers generated before repeating)

• WELL TESTED

• FAST

• REPRODUCIBLE

• REVERSIBLE

• EASILY IMPLEMENTED (machine dependent)

• "SPLITTABLE"

Controlled Randomness Types of Generators

TYPES OF GENERATORS
Ui = [(a * Ui-1) + c] mod (m)
where,
Ui = random number
U0 = seed
a = multiplier
c = increment
m = modulus

• LINEAR CONGRUENT (LCG's)
• "Best analyzed"
• "Most widely used“

• COMBINED LCG: stream pieced together
from different generators. (LONG PERIODS)

LCG's are a special case of Ui = g(Ui-1 , Ui-2 , . . .) mod (m)
where the function g(Ui-1 , Ui-2 , . . .) is (a * Ui-1) + c
However, g(Ui-1 , Ui-2 , . . .) can be:

1) a1 Ui-1 + a2 Ui-2 + an Ui-n (LONG PERIODS)
OR

2) a1(Ui-1)2 + a2 Ui-1 + c
OR

3) Ui-L + Ui-K (LONG PERIODS)

Controlled Randomness Generator IID TEST

TESTS OF HOW WELL GENERATOR
APPROXIMATES AN IID SOURCE

• EMPIRICAL (Localized and limited)
• Chi-Square, Serial, Run-up, etc.
• Very Problem-Specific

• THEORETICAL (Global)
• Evaluate geometric structure of scatter-plots:

• Lattice tests (e.g., cubic lattice test)
• Spectral test: Measure distance between

hyperplanes

• Can't use for some types of generators

Controlled Randomness Generator IID TEST

EXAMPLE GENERATOR AND SCATTER PLOTS
FOR OVERLAPPING PAIRS

SEED
U0 GG

Ui+1Ui

GG

Ui+3UI+2

G
U(i) = generated number at time i

= example generator: Ui = [(a * Ui-1) + 1] mod (64)

a=37

image corrupted

a=21

image corrupted

Controlled Randomness Generator IID TEST

EXAMPLE GENERATOR AND SCATTER PLOTS
FOR OVERLAPPING TRIPLES

SEED
U0 GG

Ui+1Ui

GG

Ui+3UI+2

G
U(i) = generated number at time i

= example generator: Ui = [(a * Ui-1) + 1] mod (64)

a=37

image corrupted

Controlled Randomness IID hyperplane-distance TESTS

GOOD AND BAD LCG'S

SEED
U0 GG

Ui+1Ui

GG

Ui+3UI+2

G
U(i) = generated number at time i

= example generator: Ui = [(a * Ui-1) + 1] mod (64)

a=37

image corrupted

Controlled Randomness IID hyperplane-distance TESTS

GOOD AND BAD LCG'S

MINSTD (a good one)
Ui = [(a* Ui-1) + 0] mod (231- 1) a ={ 16807,48271,69621}
good spectral tests, a full (m-1) period with no increment needed and no restrictions on U0,
well tested both empirically and theoretically, 390 assembler code exists.
SPECTRAL MEASURES:

a = 16807 a = 48271 a = 69621
S = 2 0.3375 0.8960 0.7836

3 0.4412 0.8269 0.9205
4 0.5752 0.8506 0.8516
5 0.7361 0.7332 0.7318
6 0.6454 0.8078 0.7667
7 0.5711 0.5865 0.6628
8 0.6096 0.4364 0.7845

SCATTER PLOT OF OVERLAPPING PAIRS …….. image corrupted

S = Dimension of tuple-space (i.e., number of successive Ui 's)
SPECTRAL MEASURE = Theoretical max / Max distance between hyperplanes

Controlled Randomness IID hyperplane-distance TESTS

GOOD AND BAD LCG'S

RANDU(a bad one)
Ui = [(65539 * Ui-1) + 0] mod (231)

SPECTRAL
S MEASURE
2 0.931
3 0.0119
4 0.0594
5 0.157
6 0.293
7 0.453
8 0.617

SCATTER PLOT OF OVERLAPPING TRIPLES …….. image corrupted

S = Dimension of tuple-space (i.e., number of successive Ui 's)
SPECTRAL MEASURE = Theoretical max / Max distance between hyperplanes

Controlled Randomness IID hyperplane-distance TESTS

GOOD AND BAD LCG'S

MINSTD
Ui = [(a* Ui-1) + 0] mod (231- 1) a ={ 16807,48271,69621}
good spectral tests, a full (m-1) period with no increment needed and no restrictions
on U0, well tested both empirically and theoretically, 390 assembler code exists.
SPECTRAL MEASURES:

a = 16807 a = 48271 a = 69621
S = 2 0.3375 0.8960 0.7836

3 0.4412 0.8269 0.9205
4 0.5752 0.8506 0.8516
5 0.7361 0.7332 0.7318
6 0.6454 0.8078 0.7667
7 0.5711 0.5865 0.6628
8 0.6096 0.4364 0.7845

SCATTER PLOT OF OVERLAPPING PAIRS …….. image corrupted

S = Dimension of tuple-space (i.e., number of successive Ui 's)
SPECTRAL MEASURE = Theoretical max / Max distance between hyperplanes

Controlled Randomness IID hyperplane-distance TESTS

GOOD AND BAD LCG'S

BCPL
Ui = [(2147001325 * Ui-1) + 715136305] mod (232)
Good spectral tests, a full (m-1) period, but increment needed. No restrictions on U0.
Not as well tested as MINSTD. Mod computation eliminated!

SPECTRAL
S MEASURE
2 0.91
3 0.85
4 0.88
5 0.78
6 0.55
7 0.60
8 0.65

SCATTER PLOT OF OVERLAPPING PAIRS …….. image corrupted

S = Dimension of tuple-space (i.e., number of successive Ui 's)
SPECTRAL MEASURE = Theoretical max / Max distance between hyperplanes

Controlled Randomness PARALLEL STRATEGIES

PARALLEL STRATEGIES
• CHANGE GENERATOR EACH PASS

• Limited number of generators
• CHANGE LCG MULTIPLIER EACH PASS

• Limited number of multipliers
OR
1) MAXIMIZE STREAM LENGTH (PERIOD)

• PRIME MODULUS LCG
• 64-BIT LCG
• COMBINED LCG
• OTHER GENERATORS

Ui = g(Ui-1 , Ui-2 , . . .) mod (m)
where g(Ui-1 , Ui-2 , . . .) is:

a1 Ui-1 + a2 Ui-2 + an Ui-n
OR

Ui-L + Ui-K (lagged fibonacci)

2) SPLIT UP STREAM FOR PASSES
• NO SEEDING PASSES, JUST WRAP

• Need bookkeeping for initial seeds

• RANDOMLY CHANGE INITIAL SEED
• Avoids alignment with bad lattice features
• Overlapping stream segments

• minimize with large period
• avoid with canonical form

Controlled Randomness SEED GENERATOR vs. PASS GENERATOR

SEED GENERATOR vs. PASS GENERATOR

SEED GENERATOR
PERIOD : MAKES NUMBER OF DIFFERENT PASSES. SMALLER FOR MORE
PASS CORRELATION.
RANDOMNESS: LESS IMPORTANT THAN FOR PASS GENERATOR. IF
DIFFERENT THAN PASS GENERATOR, OVERLAP MINIMIZED.
SPEED: LESS IMPORTANT THAN FOR PASS GENERATOR.
REVERSIBILITY: NEEDED FOR DEBUGGING

PASS GENERATOR
PERIOD: IF EVENLY DIVISIBLE BY NUMBER OF PASS GENERATOR
INVOCATIONS IN A PASS, FIRSTPASS WILL REPEAT WHEN PERIOD IS
REACHED.
RANDOMNESS: CRITICAL FOR NO CORRELATION BETWEEN PASSES, AND
WITHIN PASSES. NO OVERLAP YIELDS BEST RANDOMNESS.
SPEED: MOST IMPORTANT WHEN CREATING LARGE ARRAYS OF RANDOM
DATA. INITIALIZATION TIME MORE COSTLY FOR SMALL PROGRAMS.
REVERSIBILITY: USED INFREQUENTLY

Controlled Randomness SELECTED GENERATORS

SELECTED GENERATORS FOR IBM (by J. Wunderlich, 1997)

SEED GENERATORS
NUMBER SPEED

CODE OF RANDOM (initial/ CAN GO
NAME SEEDS PERIOD QUALITY? running) BACKWARD
OLDGSEED 1 2^26 - A/B Y
LCGPRIME 1 2^31 B A/B Y
(DEFAULT)

PASS GENERATORS
NUMBER RANDOM SPEED

CODE OF QUALITY/ (initial/ CAN GO
NAME SEEDS PERIOD OVERLAP? running) BACKWARD
OLDLCG32 1 2^29 D/Y A+/A+ Y
(DEFAULT)
NEWLCG32 1 2^29 B-/Y A/A Y
COMBOLCG 2 2^63 B+/Y A-/B- Y
FIBOMULT 55 2^83 A+/Y C+/A- N
FIBOPLUS 521 2^531 A/N D/A N

NOTE: ALL GENERATORS WELL TESTED(EXCEPT OLDGSEED)
NOTE: FOR "CONTROLLED RANDOMNESS", OLDGSEED,LCGPRIME,OLDLCG32,AND
NEWLCG32 CAN BE SPECIFIED AS BOTH SEED AND PASS GENERATORS

Controlled Randomness API CODE EXAMPLES

API’s developed by J. Wunderlich, 1997

EXAMPLE USE OF J. Wunderlich API’s by System’s level programmers:

SEED GENERATOR ("LCGPRIME"):
FORWARD: Gs: Vi = [(48271* Vi-1) + 0] mod (231- 1)
BACKWARD: Gs: Vi = [(1899818559* Vi-1) + 0] mod (231- 1)

PASS GENERATOR ("FIBOPLUS"):
G: Ui = [Ui-521 + Ui-168] mod(232)

API CODE SYNTAX:
?GENSEED[SEEDGEN(XSEEDGEN)][PASSGEN(XPASSGEN)]
PASSGEN() **....................[PASSGEN(XPASSGEN)]
where *** is BITS,CHAR,DEC,FLOAT,or RNG

API CODE EXAMPLE

SEED GENERATOR
("LCGPRIME"):

FORWARD:
Gs: Vi = [(48271* Vi-1) + 0] mod
(231- 1)
BACKWARD:
Gs: Vi = [(1899818559* Vi-1) + 0]
mod (231- 1)

PASS GENERATOR
("FIBOPLUS"):
G: Ui = [Ui-521 + Ui-168] mod(232)

(V0)

PROGRAM EXECUTION NUMBER 1

PROGRAM EXECUTION NUMBER N

Gs

Gs

Vj+1

Vj

Gs

Gs
Vj+m

Vj+2

Vj-521, Vj-168

Gs

Ui+n

GG
Ui+1Ui

G
Ui+3Ui+2

G

Vj-520, Vj-167

G

Uj-521, Uj-168

GG
Ui+1Ui

G
Ui+3Ui+2

G G

Uj-521, Uj-168

Ui+n

	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	IBM S/390 RNG API User Manual by J. Wunderlich, PhD. 1997
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Slide Number 30
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Controlled Randomness
	Slide Number 45

