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Avrtificial neural networks are a form of connectionist architecture where many simple computational nodes are connected in a fashion similar to that of
biological brains for the purpose of solving problems that require rapid adaptation or where underlying governing equations are not known or cannot be
easily computed. This chapter first discusses the use of various computer platforms for implementing neural networks, then focuses on two single-chip
neurocomputer implementations: (1) An artificial dendritic tree “bottom-up” VLSI chip; and (2) A vector-register microprocessor “top-down” design with
on-chip learning and a fully-parallel, entirely-digital implementation facilitated by modifying the neuron transfer function using a polynomial approximation
with clipping of neuron inputs outside of specified values. The validity of this methodology is supported by an analysis of the mathematics of gradient decent
learning.

1. Introduction

A discussion of machine intelligence types is a good place to begin a neurocomputer design process. Machine intelligence includes both “symbolic” Al and artificial
neural networks. Symbolic Al programs use heuristics, inference, hypothesis testing, and forms of knowledge representation to solve problems. This includes “Expert
Systems” and programming languages such as Prolog or LISP, with knowledge contained in logic, algorithms, and data structures. A neural network (NN) is a form of
connectionist computer architecture (hardware or software) where many simple computational nodes are connected in an architecture similar to that of a biological
brain. Neurocomputers implement NN’s. A first step in designing a neurocomputer is choosing an architecture that is either structurally similar to, or merely produces
results in a similar fashion to the human brain (i.e., “bottom-up” vs. “top-down” design) (Wunderlich 2004).

Most NN’s are top-down designs trained to react to external stimuli. They learn via iterative mathematics to change inter-neuron connection strengths (weights) until
outputs converge to desired tolerances. The NN learns such that multiple input/desired-output pairs are satisfied simultaneously; the final set of weights represents
compromises made to satisfy the constraints. Once trained, the NN can react to new stimuli (i.e., other than the training-set). An implementation problem to consider is
that the matrix and vector calculations common to most NN’s are often run on von Neumann uniprocessor machines with a “bottle-neck” forcing non-parallel
computation. SMP (Symmetric Multi-Processing) architectures improve performance; however the best machines for these calculations are MPP (Massively Parallel
Processing) or vector-register supercomputers; or embedded, application-specific, highly parallel systems — especially those providing learning in real-time. An all-
digital vector-register NN processor (with on-chip learning) is presented below.

The bottom-up approach is to build a system which functions like a biological brain at the circuit-level. The artificial dendritic tree hybrid-analog/digital chip
presented below is an example of this (Elias 1993, Wunderlich, et al. 1993)

Predictions of when computer performance will reach that of the human brain often employ Moore’s Law to predict computing speed or number of transistors per chip:

QNEW = QOLD (2(%5)j ( ! )

where Qqiq is today’s computing speed (or chip density), and Quew is computing speed (or chip density) n years in the future (i.e., speed and chip density double every 18
months). Although this law remains valid to-date, it must eventually break down; in less than 100 years, assuming a present day Q.4 Speed of 6Ghz and a chip density
of 50 million transistor per chip, Moore’s Law predicts a Qnew that would require electricity to travel through a transistor faster than the speed of light and more
transistors on a chip than the number of atoms that could fit in the volume of a typical computer “case.” This type of prediction can also be misleading if the degree of
parallel processing (and pre-processing) that occurs in most biological brains is not considered. Multitasking manmade subsystems as efficiently and elegantly as the
human brain is a major undertaking. The degree of parallelism (DOP) of the human brain is simply not found in PC’s, workstations, or even mini-computers. Only in
some supercomputers does parallelism come close to what might be required (Wunderlich 2003). Embedded systems could eventually achieve these goals with many
simple devices working independently; however embedded systems often lack the computation power (and precision) of even the simplest PC (Wunderlich 1999). A
comparison of computing platforms and their use for implementing machine intelligence is shown in Table 1.

Multitasking is a significant part of NN’s where learning occurs between the many simple computational nodes. If an MPP machine could be built with billions of
nodes (like the human brain), instead of just thousands (to-date), it could possibly implement an NN to rival the functionality of the human brain. Vector-register
architectures are also well suited to the many parallel computations involved in the millions of “multiply-accumulates” often required for even the simplest of NN
training.

Table I. Levels of Computing and Machine Intelligence Use

LEVEL HARDWARE and DEVICES OPERATING SYSTEMS MACHINE
INTELLIGENCE USE
Embedded Microcontroller: (Intel, Motorola, PIC’s) None or custom Not typically used for symbolic Al

Microprocessor: (Intel/AMD, Motorola, PowerPC) programs.

ASIC: (Application Specific IC’s) Neural network ASIC’s can be
excellent for high-speed real-time-
learning neural network applications.

PC Microprocessor (Intel/AMD, PowerPC) Windows, DOS, MAC 0OS, B, Linux Acceptable for neural network
simulations and symbolic Al programs.
Workstation Silicon Graphics , SUN, IBM RS6000 with multiple Windows NT, UNIX, AIX Good for neural network simulations

Microprocessors (MIPS, SPARC, Intel/AMD, and symbolic Al programs.

PowerPC)

Mini- IBM AS400, Amdahl, HP, Hitachi UNIX, MVS, VMS, 0S 390 Good for neural network simulations

Computer (typically SMP) and symbolic Al programs.

Super- SMP: (e.g., IBM S/390) SMP: UNIX, MVS, OS 390 Very good for neural network
Computer MPP: (e.g., IBM SP2, Cray) MPP: custom distributed OS simulations and symbolic Al programs.

Vector-register: (e.g., Cray, IBM S/390 with vector- | Vector-register: typically custom MPP and Vector-register especially

register unit) 0S (e.g., for Cray) good for neural networks.




2. Design Methodology

The following steps can be used for any engineering design (Wunderlich 2001):

@) Define problem

(b) Simplify

(c) Find governing equations
d) Build

(e) Test and rebuild as needed

Defining a problem includes creating or selecting the concepts to model, observe, and/or derive. An assessment is made of data needed and mathematical tools
required. The “simplify” step involves making assumptions and considering different approaches. The selection of hardware platforms and programming languages can
significantly effect the complexity, precision, and speed of both simulations and real-time systems. Finding governing equations involves identifying fundamental
principles and may require deriving new equations. Different equation-solving techniques are considered; this may include selecting a solution for the fastest real-time
response. For simulations, the selection and implementation of a solution may be more dependent on available programming constructs and functions, or on a choice of
available numerical technigques. Care should be taken to ensure that the chosen approach does not cause discrepancies between simulations and real-time systems. The
"build" step involves fabricating devices after simulating. Engineering of hardware and software may require real-time systems to interactively communicate with a
concurrently running simulation (Campos & Wunderlich 2002). Testing (and rebuilding as needed) involves verifying performance of hardware and software under
various operating scenarios. This includes hand-checking computations and assessing resultant data for realistic results (e.g., order-of-magnitude checks). It can also
involve gathering empirical data from observing real-time system performance, then modifying a simulation to create a more accurate model -- or possibly redesigning
and rebuilding the real-time system. Assumptions made during the "simplify" step may need to be reconsidered.

3. Neurocomputer problem definition

Two methods for designing neurocomputers are presented below. Both can be classified as embedded systems. The first is a bottom-up design; an artificial dendritic
tree where biological brain function is modeled as RC analog circuit elements that produce signals similar to those propagating through the dendritic tree inter-neuron
connections of the human brain. This approach is modeled after the concept shown in Fig. 1. The second design is a top-down design that can process the vector and
matrix operations of a typical NN mathematical model; and although it is designed as an embedded device, it has many of the design features of a vector-register
supercomputer. The “behavioral” model shown in Fig. 2 inspired this approach.
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Figure 1. Biological neuron tor bottom-up neurocomputer design.
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Figure 2. Behavioral model for top-down neurocomputer design.
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4. Simplifications and assumptions

The bottom-up neurocomputer design is modeled and simplified by substituting analog circuit transient responses for the electrochemical signals and activations that
occur in biological brain function. A design assumption is made that all neurons have fixed connections to all other neurons so that learning can take place by
strengthening or weakening connections; the biological growing of new connections is mimicked by electrical connections that are simply inactive until a new
connection is desired. The governing equation for the bottom-up neurocomputer presented here is based on the theory in (Elias 1993) and the biology in Fig. 1. This is
modeled as shown in Fig.3.

R, = Neuron membrane resistance
Cm = Neuron membrane capacitance

X —
R V(X,1) R, = Serial axial cytoplasm resistance
m V}, = Resting neuron membrane voltage
¥
R, V(X,t) = Neuron membrane voltage at

location X and time t as a
I result of a current density 1(X,t)

Figure 3. Analog circuit representation (Elias 1993) of biological model in Fig. 1.
where neuron membrane voltage V(X,t) is found by solving:

N (X, 1) R, N (X,1)
a R X?

a

Ra*Cpn™ ~V +R_ *I(X,t) (2)

The selection of a NN model for a top-down neurocomputer implementation is made here by analyzing historical advances in NN’s while keeping in mind the relative
success of models to be implemented in hardware or software. The following models were considered:

Back-propagation (Rumelhart & McClelland 1986, Rumelhart et al. 1986)
MADALINE Il (Widrow et al. 1987, Andes 1988, Widrow and Lehr 1990)
Hopfield (Hopfield 1982, Hopfield 1984)

BOLTZMANN MACHINE (Ackley et al. 1985)

BAM [Bi-directional Associative Memory] (Kosko 1987)
NEOCOGNITRON (Fukushima 1983)

ok wnNRE

7.

The relatively limited applications of the BAM and the NEOCOGNITRON eliminated these two from consideration. The BOLTZMANN MACHINE was eliminated
next since the generalized delta rule of backpropagation is a faster learning algorithm for multilayered NN’s (Widrow and Lehr 1990). Although there have been a
number of successful applications of the Hopfield model, the exhaustive connectivity between neurons is less desirable for a single-chip implementation. MADALINE
111 and Backpropagation function in a similar fashion, however backpropagation exhibits faster learning (Widrow and Lehr 1990). Backpropagation is therefore the
model chosen for implementation here.

In the past there have been a number of successful integrated circuit implementations of neural networks which consolidated the many neural network
multiply/accumulate operations onto a chip or a board, but performed the computationally expensive neuron transfer function execution by a host computer (i.e., off-
chip or even off-board); this computation has also be done serially, one neuron at a time, through look-up tables or numerical methods. Examples are Hitachi neuro-
chips (Masaki 1990), and Morton Intelligent Memory Chips (Morton 1988).

Until recently, creating a fully parallel neual network chip with parallel on-chip learning and a large neuron count was not fesible (i.e., too high of a transister count
(wunderlich 1992)). A single-chip neurocomputer has the potential of much faster execution by eliminating the latency of off-chip tranfer function execution. Asingle-
chip neurocomputer can be implimented in several ways:

Discrete analog components for all computations (Soucek 1989, Card 1995, Lin et al. 1999).

Digital circuits for all computations except transfer function implemented as serial or parallel analog circuits (Soucek 1989).
Digital circuits for all computations including transfer function implemented as serial or parallel look-up tables (Nihal et al. 2001).
Parallel vector-register digital circuits for all computations including a polynomial approximation of the transfer function.

PonE

The first two approaches rely on analog circuits that can suffer from a number of limitations (e.g., drift, fabrication inconsistencies, conversion delays. etc.), (Card
1995, Lin et al. 1999); and although methods have been proposed to somewhat compensate for these problems (Card 1995), the approach chosen here is all-digital. The
third approach, although entirely digital, would require large on-chip memory to yield the precision required for parallel on-chip learning; look-up table approaches
often restrict transfer function computations to serial (one neuron at a time) execution. They may also require learning to be done off-chip with weights down-loaded
onto the chip after learning completed. A technique to improve this is proposed in (Nihal et al. 2001) where a “Symmetric Table Addition Method” uses two or more
table lookups per transfer function evaluation. However the fourth approach (using a polynomial approximation of the transfer function) is likely to scale better when
the architecture is expanded to thousands of neurons. This method is therefore chosen here; and on-chip learning is accomplished by defining a new transfer function,
the "“clipped-sigmoid,” which is non-linear over an input domain wide enough to allow the generalized-delta, gradient-decent learning of backpropagation to work.
Conversely, this domain is narrow enough to allow the transfer function to be approximated with a relatively high degree of precision; and since the approximation is a
simple polynomial, it is easily implemented in digital hardware. For any top-down neurocomputer design, assumptions must be made for the magnitudes and precision
needed for weights. Hardware can be simplified by designing the NN to have the minimum required computational precision (Wunderlich 2001). It’s important to
recognize that greater precision is needed for evaluation of each neuron transfer function during training (Beiu et al. 1998, Nihal et al. 2001).
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5. Governing equations

The governing equation for the bottom-up neurocomputer design presented here is based on the theory in (Elias 1993). This implementation is shown in Fig 4. and is
represented by equation (2) above. The field effect transistors (FET’s) in Fig. 4 act to inhibit or stimulate by pulling the effected node down to the Inhibitory voltage
(i.e., GND=0volts) or up to the Excitation voltage (i.e., Vigp >Viest).\

BRANCH #1 BRANCH #2
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Gnd

The architecture for the top-down backpropagation neurocomputer design is shown in Fig. 5 including exemplars (i.e., desired outputs paired with corresponding
inputs) for the simple XOR.
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Figure 5. Layered backpropagation neural network used for “top-down” neurocomputer design.



5.

Simulations

Here, learning involves repeatedly feeding the network exemplars; each time changing weights as a function of a backpropagated
error between the desired output and the actual output, until the approximate desired outputs are observed (Rumelhart & McClelland
1986, Rumelhart et al. 1986, Widrow and Lehr 1990). This is performed as follows:

1.

Choose small random initial values for weights (W's), and choose BIAS’ -- typically set to 1; however
the bias can be treated as a variable to shift the neuron output values of the entire network or to
selectively inhibit or excite certain neurons (e.g., perhaps to be influenced by another concurrently
running network). This kind of mechanism was observed in human brain circuits by (Ross 1991) where
the effect is to lower or raise the level at which the neurons fire:

"This kind of circuit might prove essential to learning, cognition, and creativity, as it could help focus attention to
certain incoming information, correlate neural activity over variable distances, and result in disregard of other
simultaneous input that might otherwise be distracting. In the human brain, such circuits may provide the
emotional context within which higher cognitive functioning occurs." (Ross 1991)

Feed the input layer an input vector (X;, X;) from an exemplar.

Propagate the signals forward via non-linear neuron transfer functions (i.e., “sigmoids”):

O — 1
i _(jBIAS*\NjBIAS)"'Z(_Oi*\Nij) (3)
l1+e ‘
O — 1
k = —(KBIAS *Wigy05) +>_ (~O; "W ) (4)
l1+e !

Create an error signal from the difference between actual and desired output for the exemplar, and use
it to change the weights between the output layer (k) and the hidden layer (j), and also between the
output neuron and bias:

*[(d, —0)*O, *@-0)]*0o, (5)
AW, s =17*[(d, —O,)*O, *(1—0O,)]*kBIAS (6)
where n is the learning rate (typically set between 0.01 and 1).
Backpropagate a weighted error signal from the hidden layer (j) to the input layer (i) and use it to

change the weights between the hidden layer (j) and the input layer (i), and also between the hidden
layer neurons and bias'".

AW, n(O*lO)Z[d— J*0, *(L-0,)*W, J*0, (7)

AW]BIAS = 77*(01 *(1_Oj))*2[(dk _Ok)*ok *(1_Ok)*ij]* JBIAS ( 8 )

Repeat steps 2 to 5 for each exemplar.

Repeat steps 2 to 6 until desired outputs have been approximately obtained (i.e., within a specified
tolerance).
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Here is some Matlab code to implement the above methodogy:
%
% A 2-2-1 or 3-3-1 back-propagation Neural Network
% by Joseph Wunderlich,Ph.D.

%
Qp**xxrxsxxenmncaxs START TIMER AND INSTRUCTION COUNTER *##x*xss
startTIME=cputime;

of emsssereneesteress DIOK AN ARCHITECTURE of 2-2-1 or 3-3-1 *ssstsbrsens

ARCHITECTURE=1; %"1" means 2-2-1, "2" means 3-3-1 Network Architecture

%******************** 2_2_1 and 3_3_1 |NPUT

PLOTTING=1; %Turn plotting on "1" or off "0" for speed

RATE=1; %Learning Rate

EPOCHcountMAX=4000; %Stop if goal not reached after this many iterations

STOPtolerance=.1; %How close to get to asymptotes at 0 or 1

%Training sets of exemplars for each architecture:

EXEMPLAR_221=[00 0; %input1, input2, and desired output for exemplar #1
011; %input1, input2, and desired output for exemplar #2
101, %input1, input2, and desire doutput for exemplar #3
110]; %input1, input2, and desired output for exemplar #4

EXEMPLAR_331=[000 0; %input1,2,3 and desired output for exemplar #1
0011; %input1,2,3 and desired output for exemplar #2
0101; %input1,2,3 and desired output for exemplar #3
0111; %input1,2,3 and desired output for exemplar #4
1001; %input1,2,3 and desired output for exemplar #5
1011; %input1,2,3 and desired output for exemplar #6
1101; %input1,2,3 and desired output for exemplar #7
1110]; %input1,2,3 and desired output for exemplar #8

if ARCHITECTURE==1 % START IMPLEMENTING 2-2-1 ARCHITECTURE

% 2-2-1 INITIALIZATION

Wac=.5; Wad=.6;

Wbc=.7; Whd=.8;

Wee=.9; Wde=1;

WcBIAS=1;WdBIAS=1; WeBIAS=1;

cBIAS=1; dBIAS=1; eBIAS=1;

Exemplar1_OutputLAST=[.5 .5 .5]; %just to get it started

Exemplar2_OutputLAST=[.5 5 .5];

Exemplar3_OutputLAST=[.5 .5 .5];

Exemplar4_OutputLAST=[.5 .5 .5];

EPOCHcount=0;

n=1;

% 2-2-1 MAIN LOOP

%

while ((EPOCHcount) < EPOCHcountMAX)& ...
((abs(Exemplar1_OutputLAST(3)-EXEMPLAR _221(1,3)
(abs(Exemplar2_OutputLAST(3)-EXEMPLAR_221(2,3)
(abs(Exemplar3_OutputLAST(3)-EXEMPLAR_221(3,3)
(abs(Exemplar4_OutputLAST(3)-EXEMPLAR_221(4,3)

> STOPtolerance
> STOPtolerance
> STOPtolerance
> STOPtolerance

[ ...
[ ...
)
EPOCHcount=EPOCHcount+1;
fori=1:4
Oc=1/(1+exp((-(cBIAS*WcBIAS)- EXEMPLAR_221(j,1)*Wac - EXEMPLAR _221(i,2)*Wbc )));
Od=1/(1+exp((-(dBIAS*WdBIAS)- EXEMPLAR_221(i,1)*Wad - EXEMPLAR_221(j,2)*Wbd )));
Oe=1/(1+exp((-(eBIAS*WeBIAS)- Oc*Wce - Od*Wde )));
if i==
Exemplar1_OutputLAST=[EXEMPLAR_221(j,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==
figure(1);
plot(EPOCHcount,Oe,'bo’);
hold on;
end;
elseif i==
Exemplar2_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==
figure(1);
plot(EPOCHcount,Oe,'r.");
hold on;
end;
elseif i==
Exemplar3_OutputLAST=[EXEMPLAR_221(j,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==
figure(1);
plot(EPOCHcount,Oe,y.");



hold on;
end;
else
Exemplard_OutputLAST=[EXEMPLAR_221(i,1) EXEMPLAR_221(i,2) Oe];
if PLOTTING==
figure(1);
plot(EPOCHcount,0e,'go");
hold on;
end;
end;

Exemplars_OutputLAST=[EPOCHcount/10000 Exemplar1_OutputLAST; ...
EPOCHcount/10000 Exemplar2_OutputLAST; ...
EPOCHcount/10000 Exemplar3_OutputLAST; ...
EPOCHcount/10000 Exemplar4_OutputLAST]
error=EXEMPLAR_221(i,3)-Oe;
errorprop=error*Oe*(1-Oe);

dWeBIAS=RATE*errorprop*eBIAS;
dWce= RATE*errorprop*Oc;
dWde= RATE*errorprop*Qd;

dWcBIAS=RATE*Oc*(1-Oc)*(errorprop*Wce)*cBIAS;
dWac= RATE*Oc*(1-Oc)*(errorprop*Wce)*EXEMPLAR _221(i,1);
dWbc= RATE*Oc*(1-Oc)*(errorprop*Wce)*EXEMPLAR _221(i,2);
dWdBIAS=RATE*Od*(1-Od)*(errorprop*Wde)*dBIAS;
dWad=RATE*Od*(1-Od)*(errorprop*Wde)*EXEMPLAR_221(i,1);
dWbd=RATE*Od*(1-Od)*(errorprop*Wde)*EXEMPLAR _221(i,2);

Wac=Wac+dWac;
Wad=Wad+dWad;
Wbc=Whbc+dWbc;
Whd=Whbd+dWhd;
Wce=Wce+dWce;
Wde=Wde+dWde;
WcBIAS=WcBIAS+dWcBIAS;
WdBIAS=WdBIAS+dWdBIAS;
WeBIAS=WeBIAS+dWeBIAS;
Wdisplay=[Wac Wad Wbc Wbd Wce Wde WcBIAS WABIAS WeBIAS];
n=n+1;
end;
end;

EPOCHcount

endTIME=cputime-startTIME

if PLOTTING==
figure(1); %open figure window #1
% axis([-120 335 -50 300]); %define x and y axis for figure window #1
title((LEARNING RATE =',num2str(RATE), ' Stopping tolerance =',num2str(STOPtolerance),' ' ...
num2str(endTIME), ' secs of CPU time ']);
xlabel('LEARNING EPOCHS');
ylabel('2-2-1 NEURAL NETWORK OUTPUT");
h =legend('00 input','01 input',"10 input','11 input',4);

hold on;
end;
% END 2-2-1 MAIN LOOP
% END 2-2-1 ARCHITECTURE
%
% BEGIN 3-3-1 ARCHITECTURE ****#¥skixsiix

elseif ARCHITECTURE==2 % START IMPLEMENTING 3-3-1 ARCHITECTURE
% 3_3_1 INlTIALIZATION Fkkkkkkkkkkkkkkkkkkkk
%Weight Values
%A,B,C are input layer neurons
%D,E,F are hidden layer neurons
%G is output layer neuron
Wad=4; Wae= 45; Waf=5;
Whd=.55; Wbe=.6; Whbf=.65;
Wed=.7; Wce=.75; Wcf=8;
Wdg=.85; Weg=.9; Wfg=.63;
%Bias values (MAY BE CHANGED BASED ON a concurrent SITUATION)
dBIAS=1; WdBIAS=1;
eBIAS=1; WeBIAS=1;
fBIAS=1; WfBIAS=1;
gBIAS=1; WgBIAS=1;




Exemplar1_OutputLAST=].
Exemplar2_OutputLAST=].
Exemplar3_OutputLAST=].
Exemplar4_OutputLAST=].

5. % just to get it started

5.

5.

5.
Exemplar5_OutputLAST=[.5 .

5.

5.

5.

Exemplar6_OutputLAST=[.
Exemplar7_OutputLAST=].
Exemplar8_OutputLAST=].
EPOCHcount=0;
n=1;
% 3-3-1 MAIN LOOP
%
while ((EPOCHcount) < EPOCHcountMAX)& ...
((abs(Exemplar1_OutputLAST(4)-EXEMPLAR _331

(SRS RS RS RS RS RS RS
[ RS ES RO RS RS RS NS
KSR R RS RS RS K

(1,4))> STOPtolerance)| ...
(abs(Exemplar2_OutputLAST(4)-EXEMPLAR_331(2,4))> STOPtolerance)] ..
(abs(Exemplar3_OutputLAST(4)-EXEMPLAR_331(3,4))> STOPtolerance)] ...
(abs(Exemplard_OutputLAST(4)-EXEMPLAR_331(4,4))> STOPtolerance)] ...
(abs(Exemplar5_OutputLAST(4)-EXEMPLAR_331(5,4))> STOPtolerance)] ..
(abs(Exemplar6_OutputLAST(4)-EXEMPLAR_331(6,4))> STOPtolerance) ...
(abs(Exemplar7_OutputLAST(4)-EXEMPLAR_331(7,4))> STOPtolerance)] ...
(abs(Exemplar8_OutputLAST(4)-EXEMPLAR_331(8,4))> STOPtolerance))

EPOCHcount=EPOCHcount+1;

fori=1:8

0d=1/(1+exp((-(dBIAS*WdBIAS)- EXEMPLAR _331(i,1)*Wad - EXEMPLAR_331(i,2)*Wbd - EXEMPLAR_331(i,3)*Wcd )));
Oe=1/(1+exp((-(eBIAS*WeBIAS)- EXEMPLAR _331(i,1)*Wae - EXEMPLAR_331(i,2)*Wbe - EXEMPLAR_331(i,3)*Wce )));
Of=1/(1+exp((-(fBIAS*WIBIAS)- EXEMPLAR _331(i,1)*Waf - EXEMPLAR_331(i,2)*Wbf - EXEMPLAR_331(i,3)*Wcf )));
Og=1/(1+exp((-(gBIAS*WgBIAS)- Od*Wdg - Oe*Weg - Of*Wfg )));

% 'black', 'white', 'red, 'green’, 'blue’, 'cyan’, 'magenta’, 'yellow', 'gray', 'lightBlue', 'orange', 'darkGreen'
if i==
Exemplar1_OutputLAST=[EXEMPLAR _331(i,1) EXEMPLAR_331(i,2) EXEMPLAR _331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og, 'redo’);
hold on;
end;
elseif i==
Exemplar2_OutputLAST=[EXEMPLAR_331(j,1) EXEMPLAR_331(j,2) EXEMPLAR _331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og, black.");
hold on;
end;
elseif i==
Exemplar3_OutputLAST=[EXEMPLAR _331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og,'green.");
hold on;
end;
elseif i==
Exemplar4_OutputLAST=[EXEMPLAR_331(j,1) EXEMPLAR_331(i,2) EXEMPLAR _331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og,'blue.");
hold on;
end;
elseif i==
Exemplar5_OutputLAST=[EXEMPLAR _331(i,1) EXEMPLAR_331(i,2) EXEMPLAR _331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og,'cyan.");
hold on;
end;
elseif i==
Exemplar6_OutputLAST=[EXEMPLAR _331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,0g,'magenta.');
hold on;
end;
elseif i==
Exemplar7_OutputLAST=[EXEMPLAR _331(i,1) EXEMPLAR_331(j,2) EXEMPLAR _331(i,3) Og];
if PLOTTING==
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figure(1);
plot(EPOCHcount,Og, 'yellow.");
hold on;
end;
else
Exemplar8_OutputLAST=[EXEMPLAR_331(i,1) EXEMPLAR_331(i,2) EXEMPLAR_331(i,3) Og];
if PLOTTING==
figure(1);
plot(EPOCHcount,Og, blacko);
hold on;
end;
end;

Exemplars_OutputLAST=[EPOCHcount/10000 Exemplar1_OutputLAST; ...
EPOCHcount/10000 Exemplar2_OutputLAST; ...
EPOCHcount/10000 Exemplar3_OutputLAST; ...
EPOCHcount/10000 Exemplar4_OutputLAST; ...
EPOCHcount/10000 Exemplar5_OutputLAST; ...
EPOCHcount/10000 Exemplar6_OutputLAST; ...
EPOCHcount/10000 Exemplar7_OutputLAST; ...
EPOCHcount/10000 Exemplar8_OutputLAST]

error=EXEMPLAR_331(i,4)-Og;
errorprop=error‘0g*(1-Og);

dWgBIAS=RATE*errorprop*gBIAS;
dWdg= RATE*errorprop*Od;
dWeg= RATE"errorprop*Oe;
dWfg=RATE*errorprop*Of;

dWdBIAS=RATE*Od*(1-Od)*(errorprop*Wdg)*dBIAS;

dWad=RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR_331(i,1);
dWbd=RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR _331(i,2);
dWecd= RATE*Od*(1-Od)*(errorprop*Wdg)*EXEMPLAR_331(i,3);

dWeBIAS=RATE*Oe*(1-Oe)*(errorprop*Weg)*eBIAS;

dWae= RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,1);
dWbe= RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,2);
dWce= RATE*Oe*(1-Oe)*(errorprop*Weg)*EXEMPLAR_331(i,3);

dWBIAS=RATE*Of*(1-Of)*(errorprop*Wfg)*fBIAS;

dWaf= RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,1);
dWbf=" RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,2);
dWcf=' RATE*Of*(1-Of)*(errorprop*Wfg)*EXEMPLAR_331(i,3);

Wad=Wad+dWad; Wbd=Wbd+dWbd; Wcd=Wcd+dWcd;
Wae=Wae+dWae; Whe=Wbe+dWbe; Wce=Wce+dWce;
Waf=Waf+dWaf; Wbf=Wbf+dWbf, Wcf=Wcf+dWcf;

Wdg=Wdg+dWdg; Weg=Weg+dWeg; Wfg=Wfg+dWfg;

WdBIAS=WdBIAS+dWdBIAS;
WeBIAS=WeBIAS+dWeBIAS;
WIBIAS=WIBIAS+dWIBIAS;
WgBIAS=WgBIAS+dWgBIAS;

Waisplay=[Wad Wbd Wcd Wae Wbe Wee Waf Wbf Wef Wdg Weg Wig WABIAS WeBIAS WIBIAS WgBIAS];

n=n+1;
end;
end;
EPOCHcount
endTIME=cputime-startTIME
if PLOTTING==
figure(1); %open figure window #1
% axis([-120 335 -50 300]); %define x and y axis for figure window #1
title((LEARNING RATE =',num2str(RATE), ' Stopping tolerance =',num2str(STOPtolerance),' ...
num2str(endTIME), ' secs of CPU time ']);
xlabel('LEARNING EPOCHS');
ylabel('3-3-1 NEURAL NETWORK OUTPUT);
h = legend('000 input','001 input','010 input','011 input','100 input','101 input','110 input','"111 input',8);
hold on;

end;

% END 3-3-1 MAIN LOOP

% END 3-3-1 ARCHITECTURE
%

end;



The neuron transfer function presented here is a polynomial approximation that can be easily implemented using parallel vector-register digital circuits. In preliminary
research, the polynomial chosen was a Taylor approximation expanded about a point f(x,)=0 (Wunderlich 1992). The Taylor polynomial approximation of any function
f(x) is given by:

2 n
P () = £ () + T/ (x = %) + T "(xo)[(x‘zf")} ......... +f "(xo){(x‘nf‘”} (9)
where P(Xo) = f(Xo), and where the error for all other x points is:
neny| (X))
ErrorTaylor = f (X) - I:)Taylor (X) = (X - XO)( K W (10)

for some number &(x) between x and x, (Burden et al. 2000).

The error for a 15" degree Taylor polynomial approximation of the sigmoid neuron transfer function of equation (3) for (x,=0) can be seen in figures 6 and 7. Large
approximation errors are encountered for (X < -2.5) and (X > 2.5). Through experiment, a better approximation was found to be a 10" degree Taylor polynomial
approximation of the e part of the sigmoid; this results in a good approximation of the sigmoid for (-3.5 > X < 3.5) as shown in Fig. 7. This approximation was termed
the “Clipped Sigmoid” in (Wunderlich 1992) and yields sufficient accuracy to allow learning to occur; however certain network initializations need to be specified (i.e.,
initial weights and bias’ values must be small to allow learning to begin).

NEURON OUTPUT

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

NEURON INPUT —8— Sigmoid

—s—7th degree polynomial
—+—9th degree polynomial
—a— 11th degree polynomial
—6— 13th degree polynomial
—x— 15th degree polynomial

Figure 6. Taylor polynomial approximations of sigmoid: 1/(1+e”-x) expanded about x = 0

0.6 -

APPOXIMATION ERROR

—e— 1/(1+e"-x) with 10th degree approx of e”-x
-0.4 4 =B=—15th degree approximation of sigmoid

.06 4
-0 9 8 7 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
NEURON INPUT

Figure 7. Error for Taylor series polynomial approximations of sigmoid: 1/(1+e"-x)
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The initial research of (Wunderlich 1992) is extended here to include more precise polynomial approximations of the sigmoid. The approximation techniques
considered are:
1. Cubic Spline Polynomial
2. Hermite Polynomial
3.  Divided-Difference Polynomial

Cubic Spline was only given preliminary consideration since it is “piecewise” requiring different polynomials for different parts of the input domain. This would
require each neuron computation to apply one of several polynomial approximations. The remaining approaches are better suited for a fully parallel implementation;
and will scale better to thousands of neurons.

A (2n + 1) degree Hermite polynomial approximation of a function f(x) with points evaluated at (Xo, X1, . . ., X») iS given in by:

Prame () = D 1 (0H, (0 + 3 /(0K () (1)
where  H, | (X) :[1—2(x—xj)|_n',j(xj)]|_§,j(x) (12)
H,; (0 = (x=x; )2 (%) (13)

Ly (%) =]£[M (14)

0 (=)

with error: n

2
[1(x=x)
_ _ | .i=0 (2n+2)
ErTorHermite - f (X) - I:)Hermite (X) - (Zn + 2)| f (5) (15)
for some number between adjacent points in (Xo, X1 . . . ., X,). This Polynomial is shown approximating f(x)=("sigmoid” of equation (3)) in figures 8 and 9. Here, a 12"

degree Hermite polynomial yields a relatively good approximation for (-3.5 > X < 3.5).

—8— Sigmoid

—+— 9th degree polynomial 144
—— 10th degree polynomial 1.2
—a— 11th degree polynomial :
—%— 12th degree polynomial 14
—6— 13th degree polynomial

NEURON OUTPUT

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

NEURON INPUT

Figure 8. Hermite polynomial approximations of sigmoid: 1/(1+e”-x) with evaluation points at x = [-6 to +6 at 0.25 intervals]

0.25 -
0.2 1

0.15 -
0.1 A
0.05 7
i At e g o nooong o o o

-0.05
-0.1

—8— 12th degree polynomial

-0.15 —— 13th degree polynomial

-0.2 4

-0.25 -
6 53 45 -38 -3 -23 -15 -08 0 07 15 22 3 37 45

NEURON INPUT

APPROXIMATION ERROF
o

Figure 9. Error for 12th and 13th degree hermite polynomial approximations of sigmoid: 1/(1+e"-x)
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An n™ degree Divided Difference polynomial approximation of any function f(x) with points evaluated at (Xo Xi ., . . ., X) is given in by:
Ponoirr (X) = a5 +a, (X — X, ) +a,(Xx— X, )(x— %, )+

A (X=X J(X = X, )+ (X=X, )

where a, = f[%,]= () (17)
f[Xo’X1]= f[xl]— f[XO]

(16)

a, =
1 (Xl_xo) (18)
y = [xo ] = LX) = TlXo.x)] FOp) - F06) 105)
2 01 X1, X (xz—X) X, — X, X, — X, (19)
f(xo) . f(x,) Xz)

(%o =X)(% =%2) (%= %o )X = X, ) (%2 = %o )(X, = %,)
a, =[x, X,... %, |

_ (%) f(x) f(x,) e

B (X =% )+ (X = %,) " (X = %o )+ (X = X;) e (%, = %o )(X = Xo1)

Divided-Difference polynomial approximations of the sigmoid are shown in figures 10 and 11, and provide the best approximations here (i.e., best precision over the
widest set of input values). Two 12" degree Divided Difference polynomial approximations are shown in Fig. 11; one with evaluation points over an X domain from —6
to 6; the other from —10 to 10. The second one yields an approximating error of (0.01) over a relatively wide domain and is the polynomial chosen for implinentation.

1.4 -
1.2
—8—SIGMOID
—+— 9th degree polynomial 14
—e&— 10th degree polynomial
—a— 11th degree polynomial 0.8 4
—%— 12th degree polynomial
—o— 13th degree polynomial 0.6 1

NEURON OUTPUT

-0.2 - -\-

04 J
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
NEURON INPUT

Figure 10. Divided-difference polynomial approximations of sigmoid: 1/(1+e”-x) with evaluation points at x =[- 6, - 5,-4,-3,-2,-1,-.5,.5,1,2,3,4,5,6]

0.06
o —8— Evaluation points: x = [-10,-9.2, -7.65, -6.3, -4, -1.9, 0, 1.9, 4, 6.3, 7.65, 9.2, 10 ]
o 0.04 —@— Evaluation points: x=[-6,-5,-4,-3,-1,-05,05,1,2,3,4,5,6 |
x
4
2 oo
o
S oA ema N TN R
= LA N T
o -0.02
x
&
< -0.04
-0.06

-0 9 8 7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
NEURON INPUT

Figure 11. Error for 12th degree divided-difference polynomial approximations of sigmoid: 1/(1+e"-x)

12



To validate the choice of the Divided-Difference polynomial approximations of the sigmoid shown above, a neural network simulation was created and tested for all
two-input logic gates including the non-linearly-seperable “XOR” used for the simulation runs shown below. The first test evaluates the effect of clipping the standard
sigmoid (i.e., no polynomial approximation). Figure 12 shows that clipping does not only allow learning, but can actually improve learning time for some cases. In Fig.
13, the Divided Diffence polynomial approximation of the sigmoid is shown to allow successful learning. This simulation is clipped at -5.25 > X < 5.25 to show the
robostness of the method (i.e., even though it works with a domain of —10 > X < 10).

"XOR": Neuron function #0, Weight set#2, Leamn rate=1, xCLIP=3.5, Stop tol.=0.1 "XOR": Neuron function #1, Weight set #2, Learn rate=1, xCLIP=3 5, Stop tol =01
1 1
I [
09F 0gt
08} 08F
5 ;
S07¢ 507t /
i 2 ]
X v /
% 06K 00--=0 exemnpla % 08 [ X
=l Lo Eoel f e
R 11--=0 exemnpla
= |
Z o4 Foar
a >
= L
Z03 =03k :
2 o &
oz “oar \\
0.1 0.1k
0 ! ! : : : : ; 0 , s s s s \ )
v 200 400 600 £00 1000 1200 1400 0 200 400 600 300 1000 1200 1400
LEARNING EPOCHS LEARNING EPOCHS
(@ (b)

Figure 12. Comparison of backpropagation learning XOR using (a) Standard sigmoid and (b) A sigmoid “clipped” outside of -3.5 >X < 3.5.

"XOR" . Meuron function #3, Weight set #2, Learn rate=1, xCLIP=5.25, Stop tol =01

'

i

0.9F
— 08F
|
o
E07F
O 8
i
& 0.6
E o 00-=0 exermpla
w05 ® o 01--=1 exempla
= +  10--=71 exempla
= 11-—-=0 exempla
04
]
iw
<03 t
Yozt

01k

O 1 | 1 | | | |
] 200 400 G00 800 1000 1200 1400

LEARMING EPOCHS

Figure 13. Backpropagation learning using 12" degree Divided-Difference polynomial approximation of sigmoid, and “clipping” outside of —5.25 >X <5.25.
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Here is the Matab code to test the different polynomial numerical methods of implementing the sigmoid transfer function, and to test the effects of clipping the transfer
function:

%**********************************************************************************************

o

A 2-2-1 back-propagation Neural Network
by Joseph T Wunderlich PhD
Including “clipped sigmoid” option
and Taylor Series (T) or Divided-Difference
Polynomial Approximations of the Sigmoid

o° oo

o

(DD)

o° oo

o

FILE: NN6.m Last updated:~4/12/04

RR Rk kb b kb b b kb b b b b b b b b b b b b b kb b b b bk b b b b b b b b b kb b b b kb b b b b b b b b b b b b b b b b b b b b bk b b b b b b b b b b b b b b b b b b i

o

o

Number of Training Epochs to Convergence:
learning RATE=1 or 57

o

% XOR XORC XORC XORC XORCT XORCDD XORCDD
% INITIAL WEIGHTS clip@ clip@ clip@ clip@ clip@ clip@
% (Wca Wda Wcb Wdb Wec Wed) +-3.5 +-5.25 +-10 +-3.5 +-5.25 +-10
Wt setl (.4 .5 .6 .7 .8 .9) 791 791 (Y) 791 (N) 791 (N) 4141 (Y) 7859 (N) 747 (N)
SWt set2 (.5 .6 .7 .8 .9 1.0) 1287 3336(Y) 1291(Y) 1287(Y) 4200(Y) 1120 (Y) 991 (Y)
Wt set3 (.6 .7 .8 .9 1.0 1.1) 481 3263(Y) 480Y(Y) 481 (N) 4112(Y) 1107 (Y) 1082(Y)
Wt setd (.7 .8 .9 1.0 1.1 1.2) 577 3236(Y) 559Y(Y) 568(Y) 4193(Y) 1118(Y) 1123(Y)
% Y = clipping observed in at least one neuron during training
% N = no clipping observed during training
% input neurons: a,b hidden neurons: c,d output neuron: e
%********* INPUT KAXKKKK KKK
WEIGHTset=2;
if WEIGHTset== Wac=.04; Wad=.05; Wbc=.06; Wbd=.07; Wce=.08; Wde=.09; SWt setO
elseif WEIGHTset==1 Wac=.4; Wad=.5; Wbc=.6; Wbd=.7; Wce=.8; Wde=.9; %Wt setl
elseif WEIGHTset==2 Wac=.5; Wad=.6; Wbc=.7; Wbd=.8; Wce=.9; Wde=1.0; SWt set2
elseif WEIGHTset==3 Wac=.6; Wad=.7; Wbc=.8; Wbd=.9; Wce=.10; Wde=1.1l; SWt set3
elseif WEIGHTset==4 Wac=.7; Wad=.8; Wbc=.9; Wbd=1.0; Wce=1l.1l; Wde=1.2; SWt setd
elseif WEIGHTset==5 Wac=1; Wad=2; Wbc=3; Wbd=4; Wce=5; Wde=6; Wt setb
elseif WEIGHTset==6 Wac=10; Wad=20; Wbc=30; Wbd=40; Wce=50; Wde=60; SWt setb
end;
WcBIAS=1; WABIAS=1; WeBIAS=1;
ARCHITECTURE=1; % (1) means 2-2-1 this is for future expansion
RATE=1; % Learning Rate
GATE=2; % Pick a logic GATE to learn (0)AND (1)OR (2)XOR (3)other
if GATE==0% AND GATE %f0:434 f£1:522 £2:499
EXEMPLAR=[0 0 0;0 1 0;1 0 0;1 1 1]; % inputl input2 desiredoutput; etc.
elseif GATE==1% OR GATE %f0:316 f£1:318 £2:260
EXEMPLAR=[0 O 0;0 1 1;1 0 1;1 1 11; %
elseif GATE==2% XOR GATE
EXEMPLAR=[0 0 0;0 1 1;1 0 1;1 1 01; %
elseif GATE==3% Other GATE
EXEMPLAR=[0 0 1;0 1 1;1 0 1;1 1 1]; % SPECIFY "OTHER" GATE HERE
end;

xCLIP=3.5;
TRANSFERfunc=3;

o°

Clip transfer function output at +-this x value
Pick transfer function:
(0) sigmoid w/ matlab EXP (no clipping)
(1) sigmoid w/clipped matlab EXP
(2)sigmoid w/clipped nth order Taylor polynmial aprx of EXP
(3)sigmoid w/clipped nth order divided-diff polynmial aprx of SIGMOID!

o0 o0 do e

o°

order=10; % Order of TAYLOR polynomial if approximating
DivDiffPOLYpointSET=2; % Anchor points for divided diffence polynomial:
% set(l) 10, 9, 8, 7, 6, 3, 0
% set(2) 10, 9.2, 7.65, 6.3, 4, 1.9, 0

EPOCHcountMAX=100000;
STOPtolerance=.1;
ROUNDtoNdigits=15;

oe°

Stop if goal not reached after this many iterations

Although driving toward 0 or 1, stop at 0-tol and 1-tol

Round set (2) divdiff poly coeficients to N digits left of
decimal, and LOOSE A DEGREE if N < 10 (input 9,10,or 15)

o° oo

o°

NoGraphics=0;

Exemplarl color='b.';
Exemplar2 color='k.';
Exemplar3 color='r

Exemplar4 color='g.';
Exemplarl colorINTERMIT='bo';
Exemplar2 colorINTERMIT='kx';
Exemplar3 colorINTERMIT='r+';
Exemplar4 colorINTERMIT='g*';

Turn off graphics to reduce execution time
Color and style of exemplar data point

o° oo oo oo

o

Color and style of exemplar data intermittant point

o° oo

o
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INTERMITindex=50; % Plot extra symbol intermittently
xXAXISmax=1400; % Define max of scale on x axis
%*********** INITIALIZATION RR Rk kb b b b b b b b b b b b b b b b b b b kb b b ik b b b i b b b e b b b b b b bk ke e e

WcBIAS=1; WdBIAS=1l; WeBIAS=1;

cBIAS=1; dBIAS=1; eBIAS=1;
Exemplarl OutputLAST=[.1 .1 .1]; %just to get it started
Exemplar2 OutputLAST=[.1 .1 .1];
Exemplar3 OutputLAST=[.1 .1 .1];
Exemplar4 OutputLAST=[.1 .1 .1];

Exemplarl Oc LAST=0; Exemplarl Od LAST=0; Exemplarl Oe LAST=0;

Exemplar2 Oc_LAST=0; Exemplar2 Od_LAST=0; Exemplar2 Oe LAST=0;
Exemplar3_Oc_LAST=0; Exemplar3_ 0d_LAST=0; Exemplar3 Oe LAST=0;
Exemplar4 Oc LAST=0; Exemplar4 Od LAST=0; Exemplar4 Oe LAST=0;

CLIPcountHIGH=[0 0 0]; %counting clips near 1 at neuron c,d,e
CLIPcountLOW=[0 0 0]; %counting clips near 0 at neuron c,d,e
EPOCHcount=0;

intermittantPLOTflag=0; % Reset flag

intermittantPLOTcount=0; % Reset count

n=1;

%$Polynomial Coefficients:

C Mclaurin=[1 1/2 1/6 1/24 1/120 1/720 1/5040 1/40320 1/362880 1/3628800 0 O O O

%*******************************************************************************
%************************ MAIN LOOP RER R IR IR Ik kI b b b kb kb b b b b b b b b b b b b b b b b b b b b b b b b i

%*******************************************************************************

while ((EPOCHcount) < EPOCHcountMAX) &
((abs (Exemplarl OutputLAST (3)-EXEMPLAR (1,3))> STOPtolerance) |
(abs (Exemplar2 OutputLAST (3)-EXEMPLAR (2, 3))> STOPtolerance) |
(abs (Exemplar3 OutputLAST (3) -EXEMPLAR (3, 3))> STOPtolerance) |
(abs (Exemplar4 OutputLAST (3)-EXEMPLAR(4,3))> STOPtolerance))

EPOCHcount=EPOCHcount+1;

intermittantPLOTcount=intermittantPLOTcount+1;

if intermittantPLOTcount==INTERMITindex
intermittantPLOTflag=1;

end;
%************************************* INITIAL GRAPHICS khkhkkhkhkhkhkhkkhkhkkhhkhkhkhkhhkkhkkhhxkx
if (NoGraphics==0) & (EPOCHcount==2)
figure (1) ; %open figure window #1
% axis ([-120 335 -50 3001); %define x and y axis for figure window #1
axis ([0 xAXISmax 0 17]); %define x and y axis for figure window #1

xlabel ('LEARNING EPOCHS') ;
ylabel ('2-2-1 NEURAL NETWORK OUTPUT') ;
if GATE== $AND GATE
h = legend('00-->0 exemplar',6 '01-->0 exemplar',6 '10-->0 exemplar', 'll1-->1 exemplar',4);
title(['"AND" : ',
'Neuron func.#',num2str (TRANSFERfunc),
'Wt.set#',num2str (WEIGHTset),
'Learn rate=',num2str (RATE)
'XCLIP="',num2str (xCLIP),
'Stop tol.=',num2str (STOPtolerance)]);

elseif GATE== $OR GATE
h = legend('00-->0 exemplar',6 '01-->1 exemplar',6 '10-->1 exemplar',6 'l11-->1 exemplar',4);
title([""OR" : ', -

'Neuron func.#',num2str (TRANSFERfunc),

'Wt.set#',num2str (WEIGHTset),

'Learn rate=',num2str (RATE)

'XCLIP="',num2str (xCLIP),

'Stop tol.=',num2str (STOPtolerance)]);

elseif GATE== $XOR GATE
h = legend('00-->0 exemplar','0l-->1 exemplar',6 'l10-->1 exemplar',6 'l1-->0 exemplar',64);
title (['"XOR" : ', R

'Neuron function #',num2str (TRANSFERfunc),
', Weight set #',num2str (WEIGHTset),

', Learn rate=',num2str (RATE)

', xCLIP=',num2str (xCLIP),

', Stop tol.=',num2str (STOPtolerance)]);

elseif GATE== $OTHER GATE
h = legend('00-->? exemplar',6 '0l1-->? exemplar',6 '10-->? exemplar',6 'l11-->? exemplar',64);
title (['"OTHER" : ', ...

'Neuron func.#',num2str (TRANSFERfunc),

'Wt.set#',num2str (WEIGHTset),

'Learn rate=',num2str (RATE)
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'xCLIP=',num2str (xCLIP),
'Stop tol.=',num2str (STOPtolerance)]);
end;

end;
hold on;

%************************************* END INITIAL GRAPHICS R E Rk ki kb b b i

for i=1:4
Xc=(cBIAS*WcBIAS)+ EXEMPLAR(i,1)*Wac + EXEMPLAR(i,2) *Wbc;
Xd= (dBIAS*WABIAS)+ EXEMPLAR (i, 1) *Wad + EXEMPLAR (i, 2) *Wbd;

%*********************

if TRANSFERfunc== $sigmoid with matlab EXP

Oc=1/ (1+exp (-Xc)) ;
0d=1/ (1+exp (-Xd)) ;

Xe= (eBIAS*WeBIAS)+ Oc*Wce + Od*Wde;
Oe=1/ (1l+exp (-Xe)) ;

%*************************

elseif TRANSFERfunc== %sigmoid with clipped matlab EXP

if Xc > xCLIP

Oc=1/ (1+exp (-xCLIP)) ; CLIPcountLOW (1)=CLIPcountLOW (1) +1;
elseif Xc < -xCLIP

Oc=1/(1+exp(—xCLIP)); CLIPcountHIGH (1)=CLIPcountHIGH(1)+1;
else

Oc=1/ (1+exp (-Xc)) ;

end;

if Xd > xCLIP

0d=1/ (1+exp (-xCLIP)) ; CLIPcountLOW (2)=CLIPcountLOW(2)+1;
elseif Xd <- xCLIP

0d=1/ (1+exp (-xCLIP)) ; CLIPcountHIGH (2)=CLIPcountHIGH(2)+1;
else

0d=1/ (1+exp (-Xd)) ;

end;

Xe=(eBIAS*WeBIAS)+ Oc*Wce + Od*Wde;

if Xe > xCLIP

Oe=1/ (1+exp (-xCLIP)) ; CLIPcountLOW (3)=CLIPcountLOW (3)+1;
elseif Xe < -xCLIP
Oe=1/ (1+exp (-xCLIP)) ; CLIPcountHIGH (3)=CLIPcountHIGH (3)+1;
else
Oe=1/ (1l+exp (-Xe));
end;
%*~k************************
elseif TRANSFERfunc== %using a polynomial approximation of EXP part of sigmoid
if TRANSFERfunc== %$sigmoid with 10th order Mclaurin polynomial approx of EXP
C=C_Mclaurin;
end;

if Xc > xCLIP

Oc=1/ (1+exp (-xCLIP)); CLIPcountLOW(1l)=CLIPcountLOW(1)+1;
elseif Xc < -xCLIP

Oc=1/ (1+exp (-xCLIP)); CLIPcountHIGH (1)=CLIPcountHIGH (1)+1;
else

approxEXP=1;

for j=l:order

approxEXP=approxEXP+C (J) * (-Xc) *Jj;

end;

Oc=1/ (1+approxEXP) ;
end;

if Xd > xCLIP

0d=1/ (1+exp (-xCLIP)); CLIPcountLOW(2)=CLIPcountLOW (2)+1;
elseif Xd < -xCLIP

0d=1/ (1+exp (-xCLIP)); CLIPcountHIGH (2)=CLIPcountHIGH (2)+1;
else
approxEXP=1;

for j=l:order

approxEXP=approxEXP+C (J) * (-Xd) 7 ;

end;

0d=1/ (1+approxEXP) ;
end;
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Xe=(eBIAS*WeBIAS)+ Oc*Wce + Od*Wde;

if Xe > xCLIP

Oe=1/ (1+exp (-xCLIP)); CLIPcountLOW(3)=CLIPcountLOW(3)+1;
elseif Xe < -xCLIP

Oe=1/ (1+exp (-xCLIP)); CLIPcountHIGH (3)=CLIPcountHIGH (3)+1;
else

approxEXP=1;

for j=l:order

approxEXP=approxEXP+C (J) * (-Xe) *Jj;

end;

Oe=1/ (1+approxEXP) ;
end;

%********************************
elseif TRANSFERfunc== % using a divided-difference
% polynomial approximation of entire sigmoid

if DivDiffPOLYpointSET==

X0= -10.0000;
XX= -9.0000;
XK= -8.0000;
XXXK= -7.0000;
XX XRK= -6.0000;
XXXKKK= -3.0000;
XXXKKKK= 0.0000;
XXXXKKKK= 3.0000;
XXXXXXXXX= 6.0000;
XXXXXXXXXX= 7.0000;
ax= 8.0000;
bx= 9.0000;
cx= 10.0000;
Sdx="?;
y= 0.000045397868702;
z= 0.000077996707284;
= 0.000066979423598;
= 0.000038297777043;
c= 0.000016347449410;
d= 0.000008828164269;
e= 0.000001281054535;
f=-0.000000703499833;
g= 0.000000110453775;
h=-0.000000012391490;

1i=0.000000001015827;
3=-0.000000000053467;
k= 0.000000000000000;

elseif DivDiffPOLYpointSET==

X0= -10.0000;
XX= -9.2000;
XX K= -7.6500;
XX XK= -6.3000;
XX XXK= -4.0000;
XXXKKK= -1.9000;
XXXKKKK= 0.0000;
XXXXRKKXKKX= 1.9000;
XXXXxxxXx= 4.0000;
XXXRXXXXXX= 6.3000;
ax= 7.6500;
bx= 9.2000;
cx= 10.0000;
Sdx=7?;

if ROUNDtoNdigits==
y= 0.000045398;

z= 0.000069539;

a= 0.000073302;

= 0.000051342;

c= 0.000035849;

d= 0.000017214;
e=-0.000000234;
£=-0.000001299;

g= 0.000000306;
h=-0.000000037;
1i=0.000000003;
j=-0.000000000000000; % DEGREE LOST !!
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k= 0.000000000000000;
elseif ROUNDtoNdigits==10
y= 0.0000453979;
z= 0.0000695392;
a= 0.0000733020;
b= 0.0000513420;
c= 0.0000358490;
d= 0.0000172141;
e=-0.0000002338;
£f=-0.0000012995;
g= 0.0000003063;
h=-0.0000000374;
1i=0.0000000031;
J=-0.0000000002;
k= 0.000000000000000;
else;
y= 0.000045397868702;
z= 0.000069539156507;
a= 0.000073302054179;
b= 0.000051342042275;
c= 0.000035849029832;
d= 0.000017214138083;
e=-0.000000233764314;
£f=-0.000001299511922;
g= 0.000000306352087;
h=-0.000000037368965;
1i=0.000000003135243;
j=-0.000000000163294;
k= 0.000000000000000;
end;
end;
if Xc > xCLIP
Oc=1/ (1+exp (-xCLIP)); CLIPcountLOW(l)=CLIPcountLOW(1)+1;
elseif Xc < -xCLIP
Oc=1/ (1+exp (-xCLIP)); CLIPcountHIGH(1)=CLIPcountHIGH(1)+1;
else
X=Xc;
Oc= y+ (X-x0) *(z+ (X=xX) * (a+ (X—-xxx) * (bt (X—-xxxXX)
* (c+ (X—XXXXX) *(d+ (X—-XXXXXX) * (et (X=xxxXxxxXX) * (f+ (X-XXXXXXXX)
F (gt (X-xxxxxxxxx) * (h+ (X-xxxxxxxxxx) *(ii+(X-ax) *(J+ (X-bx)
*k)))))))))) )
end;
if Xd > xCLIP
0d=1/ (1+exp (-xCLIP)); CLIPcountLOW(2)=CLIPcountLOW (2)+1;
elseif Xd < -xCLIP
0d=1/ (1+exp (-xCLIP)); CLIPcountHIGH (2)=CLIPcountHIGH (2)+1;
else
X=Xd;
Od= y+ (X-x0) *(z+ (X-xx) * (a+ (X—-xxX) * (b+ (X—-xxXX)
* (c+ (X—XXXXX) *(d+ (X—-XXXXXX) * (et (X=xxxXxxXX) * (f+ (X-XXXXXXXX)
* (gt (X=-xxxxxxxxX) * (ht (X-xxxxxxxxxx) *(ii+ (X-ax) *(J+ (X-bx)
*k))IIIIIII)
end;
Xe= (eBIAS*WeBIAS)+ Oc*Wce + Od*Wde;
if Xe > xCLIP
Oe=1/ (1+exp (-xCLIP)); CLIPcountLOW (3)=CLIPcountLOW (3)+1;
elseif Xe < -xCLIP
Oe=1/ (1+exp (-xCLIP)); CLIPcountHIGH (3)=CLIPcountHIGH(3)+1;
else
X=Xe;
Oe= y+ (X-x0) *(z+ (X-xx) * (at (X-xxx) * (bt (X-xxxX)
*(Cct+ (X—xxXXXX) F(d+ (X—xxXXXXX) * et (X—xxxxxxx) * (f+ (X-XXXXXXXX)
F(gF (X=xxxxxxxXxxX) * (h+ (X-xxxxxxxxxx) *(ii+(X-ax) * (4 (X-bx)
*k))IIIIIIII) G
end;
end; %end "if TRANSFERfunc==" loop
%********************************
if i==

Exemplarl Oc_ LAST=Oc;
Exemplarl Od LAST=0d;
Exemplarl Oe_ LAST=Oe;
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Exemplarl OutputLAST=[EXEMPLAR(i,1) EXEMPLAR(i,2) Oe]l;
if NoGraphics==
figure(1l);

if (intermittantPLOTflag==1) | (EPOCHcount==1)
plot (EPOCHcount,Oe,Exemplarl colorINTERMIT) ;
else
plot (EPOCHcount, Oe,Exemplarl color);
end;
end;
hold on;
elseif i==

Exemplar2 Oc_LAST=0c;
Exemplar2 Od LAST=0d;
Exemplar2 Oe LAST=0Oe;
Exemplar2 OutputLAST=[EXEMPLAR (i,1) EXEMPLAR(i,2) Oe];
if NoGraphics==0
figure (1) ;
if (intermittantPLOTflag==1) | (EPOCHcount==1)
plot (EPOCHcount,Oe, Exemplar2 colorINTERMIT) ;
else
plot (EPOCHcount, Oe,Exemplar2 color);
end;
end;
hold on;
elseif i==
Exemplar3 Oc LAST=Oc;
Exemplar3 Od LAST=0d;
Exemplar3 Oe LAST=0Oe;

Exemplar3 OutputLAST=[EXEMPLAR (i,1) EXEMPLAR(i,2) Oel;

if NoGraphics==0
figure (1) ;
if (intermittantPLOTflag==1) | (EPOCHcount==1)
plot (EPOCHcount,Oe,Exemplar3 colorINTERMIT) ;
else
plot (EPOCHcount, Oe, Exemplar3 color);
end;
end;
hold on;
else
Exemplar4 Oc_ LAST=Oc;
Exemplar4 Od LAST=0d;
Exemplar4 Oe LAST=0Oe;

Exemplar4 OutputLAST=[EXEMPLAR(i,1) EXEMPLAR(i,2)

if NoGraphics==

figure (1) ;
if (intermittantPLOTflag==1) | (EPOCHcount==
plot (EPOCHcount,Oe,Exemplar4 colorINTERMIT) ;
else
plot (EPOCHcount, Oe,Exemplard color);
end;
end;
hold on;

if intermittantPLOTflag==
intermittantPLOTflag=0; % Reset flag
intermittantPLOTcount=0; % Reset count

end;

end;

Oe]l;

Exemplars_OutputLAST=[EPOCHcount/10000 Exemplarl Oc_ LAST Exemplarl Od LAST Exemplarl Oe LAST;

EPOCHcount/100
EPOCHcount/100
EPOCHcount/100

error=EXEMPLAR (i, 3) -Oe;
errorprop=error*Oe* (1-0Oe) ;

dWeBIAS=RATE*errorprop*eBIAS;

diWce=
dWde=

dWcBIAS=RATE*Oc*

dWac=
diWbc=

dWad=
dwbd=

(

(

(
dWdBIAS=RATE*Od* (1-0d

(

(

RATE*errorprop*Oc;
RATE*errorprop*0d;

1-0Oc
1-0Oc
1-0Oc

* (errorprop*Wce
* (errorprop*Wce
* (errorprop*Wce
* (errorprop*Wde
* (errorprop*Wde
* (errorprop*Wde

RATE*Oc*
RATE*Oc*

RATE*Od*
RATE*Od*

1-0d
1-0d

00 Exemplar2 Oc_LAST Exemplar2 Od_LAST Exemplar2 Oe LAST;
00 Exemplar3 Oc_ LAST Exemplar3 Od LAST Exemplar3 Oe LAST;

00 Exemplar4 Oc_ LAST Exemplar4 Od LAST Exemplar4 Oe LAST];

*CcBIAS;
*EXEMPLAR (i,1);
*EXEMPLAR (i,2) ;
*dBIAS;
*EXEMPLAR(i,1);
*EXEMPLAR (i,2) ;
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Wac=Wac+dWac;

Wad=Wad+dwWad;

Woc=Wbc+dWbc;

Wbd=Wbd+dwbd;

Wce=Wce+dWce;

Wde=Wde+dWde;

WcBIAS=WcBIAS+dWcBIAS;

WABIAS=WdBIAS+dWdBIAS;

WeBIAS=WeBIAS+dWeBIAS;

Wdisplay=[Wac Wad Wbc Wbd Wce Wde WcBIAS WABIAS WeBIAS]; %display weights

if NoGraphics==
Exemplars OutputLAST

else
Exemplars OutputLAST
end;
n=n+1;
end; %end "for i=1:4" loop

%********************************

end; %end while loop
%********************************************************************************
%***************** END MAIN LOOP ER R Ik kS kb b b kb b b b b b b b b b b b b bk b b b b b b b b b b b b b b b 2
%********************************************************************************
EPOCHcount

CLIPcountLOW

CLIPcountHIGH

$endTIME=cputime-startTIME;

$instructionCOUNT=flops;

6.  Analysis of modifying backpropagation

To fully understand the implications of clipping the inputs to neuron transfer functions outside of specified values, one must analyze the mathematics of
backpropagation learning and the derivation of equations (3 to 8) above.

For the network to learn we minimize the error (E) between actual output (O) and desired output (d):

E=0-d (21)

And learning is completed when E = 0 at the minimum of the error surface (such as that of the simple example shown in Figure 14) when the W’s are found that satisfy
the desired outputs for all input combinations. This is accomplished by taking small simulation steps (n) along a calculated gradient via partial derivatives towards the
minimum. This is gradient decent learning.

Neuron

Error Surface

Figure 14. Error Surface for Backpropagation Learning
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Figure 15. General three-layered (i.e., an input layer, one hidden layer, and an output layer) backpropagation network configuration.

And for the general network configuration shown in Figure 15, we derive equations (3 to 8) by minimizing the sum squared error
1 2
E=>>(d,-0,) (22)
25

between desired outputs dk coming out of output neuron in output layer k, and the actual outputs Oy ,by changing weights in small learning steps n, and in
the opposite direction as the uphill sloping gradient; therefore:

oE
A(\N i ) a—|n (23)
oW,
and then we backpropagate the error to the next layer such that:
dE

AW, ) a | -Nn——&AW, 'S | (24)
] d - J

ij

To get Oy into calculations, we use the chainrule:

AW, =—n dE dO, dsum, (25)
dO, dsum, dW,,

as shown in Figure 16.

1
where SUM, = ZOjok and O, = f(sumk) = Treom
j

Output value

Transfer function =
1/C1+Exp[—=sum])

Input value

n.5 1

Figure 16: Nonlinear continuously differentiable neuron transfer function.

Solving each piece of (25) yields:
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AW, =-n . GE . 4O, , dsum,
e do, dsum, dw,,
1 2 = f'(sum,)
a[zg(dk—ok)} oS ow,
00, oW,
1
:E*Z(dk_ok)(_l) :Zoj
i
= _(dk _Ok) = Oj for a given Aij

AW =-n(=(d, = O))(f'sum))(O;)
and using the Quotient Rule to evaluate ( f 'sumk) and letting SUM, be x:
() YOOU (9 U0V ()
(v(x)’

with U(X) =L and V(X) =1+€™" forour f(SUM,)= % =f(x)= ! —
1+ 1+e™
- 002 O -MO+e (D)
(1+ e
—_— e_x
L+e™)?
And then we manipulate it to get it in the form of all Ok = f(X) = — terms:
_e7+(@-) (e7+D-1 Q@Q+e) 12 1 1
(L+e™)? (L+e™)?*  (A+e™)? (@1+e7)? (A+e™) (L+e™)?

= f(x)— f(x)*
= ()@ f(x))
f'sum =f'(x) =0,(1-0,)
To yield our equation 5 when we substitute (28) in (26): AWJ-k =n* [(dk -0, )* O, *A-0, )]*OJ-

(26)

(27)

(28)

This has the effect of magnifying the weight changes when the net input to a given neuron is near zero as shown in Figure 17; and results in “pushing ” neuron outputs

towards the asymptotes at 0 and 1.

1,0.25

. Sumy

o, = f(sumk):% 0,'= f'(sum,) =0, (1-0,)

+e

Figure 17: Nonlinear continuously differentiable neuron transfer function and it’s derivative which peaks when the net input to
a neuron is zero and has dramatically less effect on learning outside of a narrow range of net input.
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Next, we backpropagate the error to derive AWij :

where AW is proportional to both (

And to get O and O; into calculations, we use the multivariable use chain rule:

8\;} and (Aij)

-n——
0

AW. = 11 E _ N 0E 00, osum, 00; dsum;
! oW, 90, osum, 60, Jsum; AW,
Solving each piece of (30) yields:
-n oE 00, osum, 0. osum,
* * * * ! * !
00, osum, 00, osum, oW
ok _ 0. i
70, =0,(1-0;) W,
= Zwik = Zoi
k

= Oi for a given AWiJ-

Then reordering terms:

AW, =7*(d, -0, )*(0,1-0)* YW, 0,(1-0,)}*Q

AWij :U*(Oj *(1_Oj))*(dk _Ok)*ok *(1_Ok)*ZMjk]*Oi

And to include the backpropagating error from all output neurons from the k layer (i.e., include all k terms in the series):

AWij :U*(oj *(1_Oj))*2[(dk _Ok)*ok *(1_Ok)*ij *0,
k

sum;

Oj': f'(sumj):Oj (1—Oj)

7, 0.25

O, '=f'(sum)=0,(1-0,)

sumyg

Figure 18: Nonlinear continuously differentiable neuron transfer functions and their derivatives.
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(31)
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(33)



The analysis above shows that the derivative of the transfer functions has the effect of magnifying the weight changes when the net input to a given neuron is near zero;
and results in pushing neuron outputs towards asymptotes at 0 and 1. Additionally, as shown in figures 17 and 18, the derivative of the transfer function also
significantly decreases outside of a narrow set of neuron input values; therefore minimizing weight changes outside of these values. This allows backpropagation
learning to continue even when the neuron transfer function is clipped.

8. Building and testing
The bottom-up design in Fig. 19 is an artificial dendritic tree VVLSI chip. It has 64 neurons and combines the analog circuits of Fig. 4 with digital circuits to latch in 4-

bit values allowing each node to be excited or inhibited for 16 different “pulse-lengths.” The chip has approximatily 10,000 transistors on a 2mm x 2mm die
(Wunderlich et al. 1993).

2
2
el
.
i
5
(i
1
(]
.
]
=

£

Figure 19. Bottom-up neurocomputer chip.

This chip was fabricated and bench-tested by latching in various pulse-length values, then measuring outputs for desired transient output voltage responses.
Part of the top-down neurocomputer design was filed as a Patent Disclosure document in the U.S. Patent office, and will be implemented as future research.

Testing any digital circuit implementation (FPGA, discrete IC chips, VLSI, etc.), or even an analog circuit implementation of a backpropagation model, involves
feeding the network each exemplar after training is completed to verify desired outputs are obtained. This can be followed by testing never-seen inputs. Testing
complex NN hardware can also involve developing verification programs for both simulated and physical prototype architectures (Wunderlich 1997). Testing more
complex neural network hardware (especially those with complex instruction-sets) should involve all of the following (Wunderlich 1997):

Architectural verification programs run in a simulated prototype-machine environment.
Digital and analog VLSI circuit simulation testing.

Machine architectural verification programs run on top of a VLSI circuit simulation.
Machine architectural verification programs run on prototype hardware.

Various instruction-mix and performance benchmark testing.

ahwNE

9. Conclusions

The top-down design proposed here can process the mathematics of the well-known backpropagation NN model; and although designed as an embedded device, it
has an architecture similar to a vector-register supercomputer. This design is entirely digital, fully parallel, and implements a polynomial approximation of the sigmoid
transfer function to allow parallel on-chip learning. The validity of this methodology is supported by an analysis of the mathematics of gradient decent learning under
the effects of clipping the transfer function outside of the range where the overwhelming majority of learning occurs.

Even though the semiconductor industry continues to increase the number of transistors per unit area, the chip-area required to include the neurons needed for a
bottom-up neurocomputer to produce useful higher-reasoning would need to be much larger than a typical chip. Biological brains have the advantage of being three-
dimensional whereas integrated circuits are mostly two-dimensional (despite multiple levels of layerization). Another problem is connecting all of these neurons since
wire routing would be in mostly two dimensions. Even with several layers of metallization (for wires), it would be very difficult to connect all neurons (with each
potentially connected to all others). Perhaps the most difficult problem to overcome in mimicking biological learning is that inter-neuron connections are not only
strengthened or weakened, but are grown. Wires on chips are fixed, and considering the required extensive connectivity between neurons, useful bottom-up designs can
be difficult to realize.

Future research could include merging bottom-up techniques for pre-processing sensory data (e.g., visual, auditory, olfactory) with top-down techniques for higher
reasoning; including combining neural networks with symbolic Al programming.
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