
O
3
:

An Optimal and Opportunistic Path Planner

(with Obstacle Avoidance) using Voronoi Polygons
David M. Coleman and Joseph T. Wunderlich, PhD.

Elizabethtown College, Elizabethtown, Pennsylvania, USA

{colemand, wunderjt}@etown.edu

Abstract- Traditional mobile robot research focuses on a robot

navigating its environment to reach a single goal while avoiding
obstacles. This paper proposes a new method called O3 to solve
the challenges presented at the Intelligent Ground Vehicle

Competition (IGVC) where a navigation course includes multiple
goals to be found in an optimal order. The O3 technique includes
improvements on traditional path planning and obstacle

avoidance techniques while providing an explicit ability to change
course as obstacles are discovered. This method uses modern
trajectories such as minimum-weighted Hamiltonian circuits, A*

algorithm for obstacle avoidance, and local points of opportunity
to update the globally optimal path using Voronoi polygons.
Environmental mapping is also used to speed up the search

algorithms in static environments. Overall, the O3 technique
exploits local points of opportunity while avoiding obstacles and
ultimately finding a globally optimal path through an unknown

environment.

This methodology will be implemented on an autonomous
web-based tour guide robot to serve the Internet community

reviewing Elizabethtown College. This methodology can be
extended to other research areas where multiple locations need to
be traversed independent of their order such as city map, trip

planners, and distribution networks (power, internet, etc) due to
its balance between weighted graphs and obstacle avoidance
(objects, traffic, construction, etc).

I. INTRODUCTION

Mobile robotic motion control can be separated into two

research areas: (1) simple obstacle-free path planning and (2)

path planning which includes various obstacle avoidance

strategies. An example of a simple obstacle-free path planning

strategy is creating a Hamiltonian circuit through a set of given

nodes [10]. A priori information may be added to plan a

specific path around an obstacle [4]. However, obstacle

locations are often not known ahead of exploration by the

robot; this warrants developing more complex obstacle

avoidance strategies.

In [1], a dynamic window approach provides a “local vs.

global” relationship and is used to store obstacles in memory

for later analysis. Heuristics along with additional feedback

from sensors are used to provide motion and obstacle locations

as seen in [9]. To improve the ease of mapping it is suggested

in [3] that obstacles be scaled to match the dimensions of the

robot. Other obstacle avoidance decisions are done using the

cell-decomposition methods of VFH* [4] and Sentz’s A*

algorithm [7].

Most importantly the O
3
 technique heavily relies on Voronoi

diagrams. The Voronoi diagram is used in other path planners

including the roadmap [14] and HGVG algorithms [5]. A

formal definition of the Voronoi diagram can be found in [5],

[14], and [16]. Related to the Voronoi diagram is the Delaunay

triangulation. As defined in [16], the Delaunay triangulation T

is the maximum planar subdivision of n points P = {P1…Pn}

such that no points of P are bounded by the circumcircle of any

triangle in T. The Delaunay triangulation will be used to

restrict the domain of our algorithms and will be expanded

upon throughout this paper. Examples of each of these are

shown in Fig. 1(b), (c), respectively.

II. PATH PLANNING

As stated in [10] and [14] a path planner must be correct and

complete. Correct meaning the algorithm must be accurate and

complete meaning an algorithm must return a failed value

when a solution is not available in a reasonable amount of

time. This is a requirement for both explicit (before motion)

and implicit (during motion) methods.

A. Classical Approach – Explicit Methods

Example: Imagine walking into a room for the first time with

the lights off and being asked to find the door on the opposite

side of the room. You do not process any knowledge of the

room’s exact dimensions, obstacles, or the quickest path to the

door. However, having the knowledge that a door exists (or

assuming it exists), and knowledge that its location is

approximately “across” the room, is enough information to

plan a path (including an obstacle-avoidance strategy) – even

though it may not be optimal.

Similarly, a robot enters an unknown environment and the

complexity of tasks is increased with multiple nodes to be

visited and exact distances and velocities to be rendered. The

information given for target nodes may include GPS position.

Thus specific distances can be calculated based on the entrance

point of the robot; and since the end of the overall path plan

often includes returning to the entrance, this often becomes a

typical Traveling Salesman Problem (TSP) [11]. By solving

the TSP for the given set, a solution will exist that is minimal

in distance (and likely to be traversable by the robot).

A breadth-first search through all possible Hamiltonian

circuits is logically the easiest, but most difficult

computationally. Given a set of n points, as shown in Fig. 1(a),

finding the TSP solution through a breadth-first search is on

the order

 ())!1(−nO (1)

since every point has a degree of (n-1) and every point can be

reached from any starting point. A general source code

structure would look like the following:

1 % Input node locations

2 % Define adjacency matrix

3 Set (control_flags)

4 for i = 1…(n-1)!

5 path = get(g, Hamiltonian);

6 if (is_unique(path))

7 P = path(information);

8 end

9 Reset control flags

10 end

11 return shortest(p)

Given the Voronoi diagram in Fig. 1(b) the Delaunay

triangulation graph can be constructed by connecting points

within touching Voronoi polygons and is shown in Fig. 1(c).

By Euler’s formula (V-E+F=2) [15] the sub-graph is said to

have at most 3n-6 edges and an extreme less number of

Hamiltonian paths. Testing has shown a breadth-first search of

the Delaunay graph is on the order

 ()nO (2)

 The actual number of Hamiltonian circuits that exist in the

Delaunay sub-graph of any graph is dependant on the topology

of the graph and therefore is not generally quantifiable.

Introducing the Delaunay sub-graph into the previous code

segment results has shown to improve the search for a TSP

solution between 40% and 90%. The specific results and

testing software will be explained later in this paper. Fig. 1(f)

shows the improved algorithm efficiency and corresponds to

Table 1.

 Throughout this paper the term “TSP solution” will be used

to identify the Hamiltonian circuit in the Delaunay domain. By

previous arguments TSP solution can be said to be correct

since the globally optimal solution was not lost in the Delaunay

reduction. With the absence of obstacles and unreachable

points within the graph the TSP solution and breadth-first

algorithm are complete.

 It can also be said that by using the TSP solution the robot

will intersect the acceptable radius error (re) on each target

R
e
d
u
c
ti
o
n
 (
%
)

re

Pn

(a)

(d) (e)

(b) (c)

6

8 7

9

10
1

2

4

3

5 6

8 7

9

10
1

2

4

3

5

6

8 7

9

10
1

2

4

3

5

6

8 7

9

10
1

2

4

3

5

(f)

of Points on Graph

Improved Algorithm Efficiency by

using the Delaunay Sub-graph

Fig. 1. (a) Environment of 10 goal nodes; (b) Voronoi Diagram of environment; (c) Delaunay Triangulation of environment; (d) Hamiltonian circuit derived by

(c); (e) Expanded node showing re (f) Reduction in processing time using (c) instead of (a).

node. Once obstacles are introduced implicit methods are

employed and the TSP solution is used as a governing

overview path.

B. Implicit Methods

Recalling the thought experiment from the previous section,

imagine starting to move in the direction you think is correct to

reach the door. How do you go about detecting, avoiding, and

overall re-evaluating the best path to follow to reach your goal?

Do you just run into objects that may be in the room and

bounce off, or do you feel with your arms and attempt to adjust

your senses to the dark room? Let us also focus on achieving

one goal and avoiding obstacles along the way.

A robot has many sensors that contribute to the “overview”

of an environment. Feedback needs to be assessed in real-time

to adjust the course of the robot. Two things need to be

considered for path alteration: turning radius and size of the

dynamic window as described in [13]. The specific algorithms

for real-time obstacle avoidance are beyond the scope of this

paper. Therefore, only key points will be discussed for

completeness of the O
3
 techniques.

As shown in Fig. 2(a), the easiest approach is to assume the

robot is a point position and can change its course at any time.

However, when implemented, this is not often the case as seen

in [3].

As outlined in [1], a dynamic window is common among

implicit algorithms for obstacle avoidance. The sensors

available on the robot govern the exact dimension of this

window. These can include laser range finders, sonar, machine

vision, and magnetic/GPS positioning. An example of the

window approach is seen in Fig. 3. Depending on the sensors

used, only certain directions may need monitored (i.e. forward)

and the previously explored areas can be stored in an

environmental map. In static environments, a map in memory

can be an effective tool to speed up processing time for

revisited areas.

By using the dynamic window approach, heuristics can be

employed for implicit path planning and obstacle avoidance.

As seen in Fig. 4, there are situations where a decision is not

obvious with the limited view of the sensors. As stated in [4]

“a larger trigger distance would not eliminate the problem.” In

fact it could increase the run time for the algorithm computing

all possible avenues, and thus be incomplete. By using a

heuristic approach such as A*, a decision based on a cost

function will be made and followed as shown in path C of Fig.

4. This cost function is explained in [7].

C. Local Opportunistic / Globally Optimal Points

To conclude our previous thought experiment, now imagine

moving towards one goal and, through sensory information, an

obstacle blocks the intended explicitly defined path. While

avoiding the obstacle, another point becomes more desirable

for traversal in distance and availability. Therefore a change in

course should be analyzed to see if it is in fact globally optimal

and not just locally opportunistic.

This locally opportunistic globally optimal visit of an out-of-

order node is a combination of the TSP solution developed in

the first section and the obstacle/motion techniques developed

in the second section of this paper. An obstacle is shown in

Fig. 5(a), which interferes with the TSP solution explicitly

planned. By avoiding the obstacle using techniques previously

discussed, a new point becomes locally opportunistic.

Consider the simplified graph shown in Fig. 5(c). This

graph is connected with edges {D1, D2, D3, T1, T2, T3} as

paths. Assume the ideal case where the turning radii (rr and rl)

are neglected and straight paths are possible. Also assume there

are no obstacles in the paths between {C, 8},{7,8},{7,n},{8,n}.

Let C be the point where the path crosses into the unexpected

Voronoi polygon as shown to the left of the obstacle in Fig.

5(a) surrounding point 8. Allow point n to be the next point to

be traversed after the set of three points shown.

Two equations can be shown: the current path as specified

G

O1 O2

Fig. 3. Dynamic window approach. Obstacles are seen at O1 and O2 and the

goal node is labeled G.

RT

(a) (b)

Fig. 2. Robot with (a) zero turning radii, (b) actual turning radii, RT

C

A B

p

Fig. 4. Cell decomposition of region where one obstacle is in the middle of

the robot’s vision. A decision needs to be made to take path A (left curve) or

path B (right curve). Using the heuristics invoked in A* path B is chosen and the

best-fit curve (path C) is implemented at point P. The curvature at point P is

equal to rl. The grid surrounding the robot represents the environmental map

being developed with A*. Its size is equal to the dynamic window shown in Fig.

3 and is govern by available sensors.

by the TSP solution in Fig. 5(a):

 {6, 7, 8, n} =
 (d6C) + (D2+T3) + (T3+D3) + (T1) (3)

and the opportunistic path shown in Fig. 5(b):

 {6, 8, 7, n} =

 (d6C) + (D1) + (D3+zT3) + (T2). (4)

It must be shown that in order for the path to be optimal (not

just ideally opportunistic) the new path eq. (4) is less weighted

than the current TSP solution in (3).

 (d6C) + (D1) + (D3+T3) + (T2) <

 (d6C) + (D2+T3) + (T3+D3) + (T1) (5)

Subtracting (d6C) from both sides:

 (D1) + (D3+T3) + (T2) <

 (D2+T3) + (T3+D3) + (T1) (6)

By trigonometry rules:

 D1 = (D2
2
 + D3

2
)

1/2
 and

 T1 = ((T3+D3)
2
 + T2

2
)

1/2
 (7)

Combining (6) and (7):

 ((D2
2
 + D3

2
)

1/2
) + (D3+T3) + (T2) <

 (D2+T3) + (T3+D3) + (((T3+D3)
2
 + T2

2
)

1/2
) (8)

Expanding and eliminating like terms:

 γ = (D3
2
+2*D3*T3+T2

2
+T3

2
)

1/2

 + T3 – T2 - (D2
2
 + D3

2
)

1/2
 + D2 (9)

Therefore, when γ > 0 the alternative path is optimal and the

course should be altered.

 Once again it is essential that the local point-of-opportunity

does not compromise the correctness and completeness of the

global solution. Therefore it is necessary that the point of non-

opportunity be the target point after the opportunity point. It is

also sufficient in the case where multiple points-of-opportunity

exists on the way to the original non-opportunistic point. This

would solve the problem where a point of interests resides in

an area of limited opening such as a box shown in Fig. 6.

 In Fig. 6 the explicit TSP solution dictates an A-B-C-D path.

However, after γ analysis, point C is determined to be locally

opportunistic and globally optimal. Now an A-C-B-D solution

exists. While on route to point B, point D is determined to be

locally opportunistic and globally optimal. Once again the

path is now changed to A-C-D-B. By this repetitive process

the γ analysis will prove to be globally correct and complete.

There is an assumption made that all points are reachable by

the robot.

 The γ analysis is a technique that is only necessary to

perform when crossing over an unexpected Voronoi polygon.

Similar to OPEN and CLOSED (and RAISED and

LOWERED) sets in Sentz’s A* algorithm a set needs to be

created for Voronoi polygon crossings along the path between

two points. By setting a flag for an unexpected Voronoi

polygon crossing the γ analysis will be limited to only those of

C

8 7

6

n

C

8 7

6

D
1

T
2

n

T1

D
2

D3 T3

C

8 7

6

n

(b) (c)(a)

Fig. 5. Following the path prescribed in Figure 1(d) the robot should traverse the points as shown in (a). With the discovery of the obstacle it changes points to

traverse the path shown in (b). (c) The combination of (a) and (b) for γ analysis.

D

B
C

A

D

B
C

A

D

B
C

A

Fig. 6. Map with more than one point of opportunity. The original TSP dictates

an A-B-C-D path. After the γ analysis, A-C-D-B is locally opportunistic and

globally optimal.

true opportunity points. Also, the polygonal crossings are used

to speed up the “nearest” point question. By knowing

specifically which Voronoi polygon the robot resides in, the

nearest point is apparent.

 By both these techniques (γ analysis and polygon sets) O
3

expands traditional robot navigation for a multiple-target

environment while still employing traditional obstacle

avoidance strategies.

III. IMPLEMENTATION

Our methods for path planning and obstacle avoidance are

being implemented to solve the challenges at the IGVC

competition in May 2008. One challenge is navigating a long,

complex maze defined by white lines painted on approximately

3-inch tall grass, and riddled with various complex obstacles

(e.g. ramps, pits, trees, fencing, and various cones). Using A*

heuristics with dimensional constraints in the cost functions as

outlined in [3] [4], both correct and complete decisions can be

made. With the addition of environmental mapping in a static

environment, obstacle-processing time can be minimal. In the

second IGVC challenge of GPS navigation with minimal

obstacle avoidance, our O
3
 method is ideal. Our Wunderbot 4

has laser ranges finders, vision system with color recognition,

digital compass, GPS receiving, and optical encoders for

sensor feedback.

IV. PRELIMINARY RESULTS

Table 1 shows the improved processing time seen in our

code during multiple trials. Matlab R2007 was chosen to test

our method because it supports graphing, provides functional

toolboxes for efficient environmental geometry analyzing and

straightforward integration into LabVIEW. LabVIEW

provides the real-time operating controls necessary for the

Wunderbot 4. The testing was done on an Intel Core Duo CPU

@ 2.00GHz. Overall, the Delaunay sub-graph provided an

average improvement over 73%.

V. FUTURE RESEARCH

After competition, the Wunderbot 4 will serve as a platform

for autonomous web-driven tours on the Elizabethtown

College campus. With our O
3
 implemented, a pre-determined

or “way-point” driven tour is not necessary. In fact, any path

can be altered (or tailored) based on student traffic,

construction paths, and/or availability of certain building/fields

on campus. By changing the weights of certain paths in the

TSP solution and cost function (with obstacles), a fully

autonomous robot is possible with O
3
.

VI. CONCLUSION

O
3
 is a unique method that combines traditional implicit and

explicit methods to offer an optimal and opportunistic (and

obstacle avoidant) solution to the areas of path planning for

autonomous robots. By continually implying graphical

techniques such as Voronoi polygons short cuts in calculations

can be achieved as well as opportunistic paths through an

unknown environment. This methodology should also yield

successful results for our Wunderbot 4 robot at international

competition and as a robot tour-guide.

VII. ACKNOWLEDGMENTS

We would like to thank the math department at

Elizabethtown College for their continuing support and

collaboration of theories within this proceeding, especially Dr.

Bobette Thorsen.

REFERENCES

[1] O. Brock, O. Khatib, “High speed navigation using the global dynamic
window approach”, IEEE International Conference on Robotics and
Automation, May 10-15, pp. 341-346 vol.1

[2] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile
robots in cluttered environments”, IEEE International Conference on
Robotics and Automation, Cincinnati, Ohio, May 13-18, 1990, pp.572-
577

[3] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast
mobile robots”, IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 16-21, 1998, pp. 1572-1577

[4] I. Ulrich and J. Borenstein, “VFH*: local obstacle avoidance with look-
ahead verification”, IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 24-28, 2000, pp. 2505-2511

[5] H. Choset and J. Burdick, “Sensor-based exploration: the hierarchical
generalized Voronoi graph”, The International Journal of Robotics
Research, Vol. 19, No. 2, February 2000, pp. 96-125

[6] A. Stentz, “Optimal and efficient path planning for partially-known
environments”, IEEE International Conference on Robotics and
Automation, May 1994

[7] A. Stentz, “The focused D* algorithm for real-time replanning”,
International Joint Conference on Artificial Intelligence, August 1995

[8] J.F. Canny and M. C. Lin, “An opportunistic global path planner”,
Algorithmica, vol. 10, pp. 102-120, 1993

[9] M. Lindhe, P. Ogren, and K.H. Johansson, “Flocking with obstacle
avoidance: a new distributed coordination algorithm based on Voronoi
partitions”, IEEE Conference on Robotics and Automation, April 26-May
1, 2004

[10] R. Siegwart and I.R. Nourbaksh, Introduction to Autonomous Mobile
Robots, The MIT Press, Cambridge, Massachusetts, 2004

[11] S.S. Epp, Discrete Mathematics with Applications, 3rd ed., Brooks Cole,
Boston, MA, 2003

[12] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, Boston, MA, 1992

[13] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance”, IEEE Robotics & Automation Magazine, Vol. 4,
pp. 23-33, March 1997

Processing Time Comparison (in seconds)

 Number of input points

 Five Six Seven Eight Nine

Full graph 0.0330 0.3656 10.12 575.0 41570

Delaunay sub-graph 0.0183 0.1059 2.036 84.97 4547

Improvement (%) 43.68 ±20.42 70.31 ±7.422 79.29 ±3.915 85.01 ±3.016 89.06
†

Table 1. Reduction of processing time shown by using the Delaunay sub-graph in Fig 1(c) over the complete connected graph of Fig. 1(a). †Standard deviation was

not calculated, as only one test run was available due to the time interval required to complete one pass.

[14] J.J.A.M. Keij, “Obstacle avoidance for wheeled mobile robotic systems
(literature exploration)”, Technische Universiteit Eindhoven, Eindhoven,
The Netherlands, February 17, 2003, Report No. 2003.10

[15] D.I.A.Cohen, Basic Techniques of Combinatorial Theory, John Wiley &
Sons, Inc., pp. 292, 1978

[16] C. Kavka, M. Schoenauer, “Evolution of Voronoi-based Fuzzy
Controllers”, International Conference on Parallel Problem Solving From
Nature, Birmingham, UK, September 18-22

