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Abstract- Traditional mobile robot research focuses on a robot 

navigating its environment to reach a single goal while avoiding 
obstacles.  This paper proposes a new method called O3 to solve 
the challenges presented at the Intelligent Ground Vehicle 

Competition (IGVC) where a navigation course includes multiple 
goals to be found in an optimal order.  The O3 technique includes 
improvements on traditional path planning and obstacle 

avoidance techniques while providing an explicit ability to change 
course as obstacles are discovered.  This method uses modern 
trajectories such as minimum-weighted Hamiltonian circuits, A* 

algorithm for obstacle avoidance, and local points of opportunity 
to update the globally optimal path using Voronoi polygons.  
Environmental mapping is also used to speed up the search 

algorithms in static environments.  Overall, the O3 technique 
exploits local points of opportunity while avoiding obstacles and 
ultimately finding a globally optimal path through an unknown 

environment. 

This methodology will be implemented on an autonomous 
web-based tour guide robot to serve the Internet community 

reviewing Elizabethtown College.  This methodology can be 
extended to other research areas where multiple locations need to 
be traversed independent of their order such as city map, trip 

planners, and distribution networks (power, internet, etc) due to 
its balance between weighted graphs and obstacle avoidance 
(objects, traffic, construction, etc). 

I. INTRODUCTION 

Mobile robotic motion control can be separated into two 

research areas: (1) simple obstacle-free path planning and (2) 

path planning which includes various obstacle avoidance 

strategies.  An example of a simple obstacle-free path planning 

strategy is creating a Hamiltonian circuit through a set of given 

nodes [10].  A priori information may be added to plan a 

specific path around an obstacle [4].  However, obstacle 

locations are often not known ahead of exploration by the 

robot; this warrants developing more complex obstacle 

avoidance strategies. 

In [1], a dynamic window approach provides a “local vs. 

global” relationship and is used to store obstacles in memory 

for later analysis.  Heuristics along with additional feedback 

from sensors are used to provide motion and obstacle locations 

as seen in [9].   To improve the ease of mapping it is suggested 

in [3] that obstacles be scaled to match the dimensions of the 

robot.  Other obstacle avoidance decisions are done using the 

cell-decomposition methods of VFH* [4] and Sentz’s A* 

algorithm [7]. 

Most importantly the O
3
 technique heavily relies on Voronoi 

diagrams.  The Voronoi diagram is used in other path planners 

including the roadmap [14] and HGVG algorithms [5].  A 

formal definition of the Voronoi diagram can be found in [5], 

[14], and [16].  Related to the Voronoi diagram is the Delaunay 

triangulation.  As defined in [16], the Delaunay triangulation T 

is the maximum planar subdivision of n points P = {P1…Pn} 

such that no points of P are bounded by the circumcircle of any 

triangle in T.   The Delaunay triangulation will be used to 

restrict the domain of our algorithms and will be expanded 

upon throughout this paper.  Examples of each of these are 

shown in Fig. 1(b), (c), respectively. 

II. PATH PLANNING 

As stated in [10] and [14] a path planner must be correct and 

complete.  Correct meaning the algorithm must be accurate and 

complete meaning an algorithm must return a failed value 

when a solution is not available in a reasonable amount of 

time.  This is a requirement for both explicit (before motion) 

and implicit (during motion) methods. 

A. Classical Approach – Explicit Methods 

Example: Imagine walking into a room for the first time with 

the lights off and being asked to find the door on the opposite 

side of the room.  You do not process any knowledge of the 

room’s exact dimensions, obstacles, or the quickest path to the 

door.  However, having the knowledge that a door exists (or 

assuming it exists), and knowledge that its location is 

approximately “across” the room, is enough information to 

plan a path (including an obstacle-avoidance strategy) – even 

though it may not be optimal. 

Similarly, a robot enters an unknown environment and the 

complexity of tasks is increased with multiple nodes to be 

visited and exact distances and velocities to be rendered.  The 

information given for target nodes may include GPS position. 

Thus specific distances can be calculated based on the entrance 

point of the robot; and since the end of the overall path plan 

often includes returning to the entrance, this often becomes a 

typical Traveling Salesman Problem (TSP) [11].  By solving 

the TSP for the given set, a solution will exist that is minimal 

in distance (and likely to be traversable by the robot). 

A breadth-first search through all possible Hamiltonian 

circuits is logically the easiest, but most difficult 

computationally.  Given a set of n points, as shown in Fig. 1(a), 



finding the TSP solution through a breadth-first search is on 

the order  

 ( ))!1( −nO  (1) 

 

since every point has a degree of (n-1) and every point can be 

reached from any starting point.  A general source code 

structure would look like the following: 

 

1 % Input node locations 

2 % Define adjacency matrix 

3 Set (control_flags) 

4 for i = 1…(n-1)! 

5      path = get(g, Hamiltonian); 

6      if ( is_unique(path) ) 

7           P = path(information); 

8      end 

9      Reset control flags 

10 end 

11 return shortest(p) 

 

Given the Voronoi diagram in Fig. 1(b) the Delaunay 

triangulation graph can be constructed by connecting points 

within touching Voronoi polygons and is shown in Fig. 1(c).  

By Euler’s formula (V-E+F=2) [15] the sub-graph is said to 

have at most 3n-6 edges and an extreme less number of 

Hamiltonian paths.  Testing has shown a breadth-first search of 

the Delaunay graph is on the order  

 

 ( )nO  (2) 

 

 The actual number of Hamiltonian circuits that exist in the 

Delaunay sub-graph of any graph is dependant on the topology 

of the graph and therefore is not generally quantifiable.  

Introducing the Delaunay sub-graph into the previous code 

segment results has shown to improve the search for a TSP 

solution between 40% and 90%.  The specific results and 

testing software will be explained later in this paper.  Fig. 1(f) 

shows the improved algorithm efficiency and corresponds to 

Table 1. 

 Throughout this paper the term “TSP solution” will be used 

to identify the Hamiltonian circuit in the Delaunay domain.  By 

previous arguments TSP solution can be said to be correct 

since the globally optimal solution was not lost in the Delaunay 

reduction.  With the absence of obstacles and unreachable 

points within the graph the TSP solution and breadth-first 

algorithm are complete. 

 It can also be said that by using the TSP solution the robot 

will intersect the acceptable radius error (re) on each target 
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Fig. 1.  (a) Environment of 10 goal nodes; (b) Voronoi Diagram of environment; (c) Delaunay Triangulation of environment; (d) Hamiltonian circuit derived by 

(c); (e) Expanded node showing re (f) Reduction in processing time using (c) instead of (a). 



node.  Once obstacles are introduced implicit methods are 

employed and the TSP solution is used as a governing 

overview path. 

B. Implicit Methods 

Recalling the thought experiment from the previous section, 

imagine starting to move in the direction you think is correct to 

reach the door.  How do you go about detecting, avoiding, and 

overall re-evaluating the best path to follow to reach your goal?  

Do you just run into objects that may be in the room and 

bounce off, or do you feel with your arms and attempt to adjust 

your senses to the dark room?  Let us also focus on achieving 

one goal and avoiding obstacles along the way. 

A robot has many sensors that contribute to the “overview” 

of an environment.  Feedback needs to be assessed in real-time 

to adjust the course of the robot.  Two things need to be 

considered for path alteration: turning radius and size of the 

dynamic window as described in [13].  The specific algorithms 

for real-time obstacle avoidance are beyond the scope of this 

paper.  Therefore, only key points will be discussed for 

completeness of the O
3
 techniques.   

As shown in Fig. 2(a), the easiest approach is to assume the 

robot is a point position and can change its course at any time.  

However, when implemented, this is not often the case as seen 

in [3].   

As outlined in [1], a dynamic window is common among 

implicit algorithms for obstacle avoidance.  The sensors 

available on the robot govern the exact dimension of this 

window.  These can include laser range finders, sonar, machine 

vision, and magnetic/GPS positioning.  An example of the 

window approach is seen in Fig. 3.  Depending on the sensors 

used, only certain directions may need monitored (i.e. forward) 

and the previously explored areas can be stored in an 

environmental map.  In static environments, a map in memory 

can be an effective tool to speed up processing time for 

revisited areas.  

By using the dynamic window approach, heuristics can be 

employed for implicit path planning and obstacle avoidance.  

As seen in Fig. 4, there are situations where a decision is not 

obvious with the limited view of the sensors.  As stated in [4] 

“a larger trigger distance would not eliminate the problem.”  In 

fact it could increase the run time for the algorithm computing 

all possible avenues, and thus be incomplete.  By using a 

heuristic approach such as A*, a decision based on a cost 

function will be made and followed as shown in path C of Fig. 

4.  This cost function is explained in [7]. 

C. Local Opportunistic / Globally Optimal Points 

To conclude our previous thought experiment, now imagine 

moving towards one goal and, through sensory information, an 

obstacle blocks the intended explicitly defined path.  While 

avoiding the obstacle, another point becomes more desirable 

for traversal in distance and availability.  Therefore a change in 

course should be analyzed to see if it is in fact globally optimal 

and not just locally opportunistic. 

This locally opportunistic globally optimal visit of an out-of-

order node is a combination of the TSP solution developed in 

the first section and the obstacle/motion techniques developed 

in the second section of this paper.  An obstacle is shown in 

Fig. 5(a), which interferes with the TSP solution explicitly 

planned.  By avoiding the obstacle using techniques previously 

discussed, a new point becomes locally opportunistic. 

Consider the simplified graph shown in Fig. 5(c).  This 

graph is connected with edges {D1, D2, D3, T1, T2, T3} as 

paths.  Assume the ideal case where the turning radii (rr and rl) 

are neglected and straight paths are possible. Also assume there 

are no obstacles in the paths between {C, 8},{7,8},{7,n},{8,n}.  

Let C be the point where the path crosses into the unexpected 

Voronoi polygon as shown to the left of the obstacle in Fig. 

5(a) surrounding point 8.  Allow point n to be the next point to 

be traversed after the set of three points shown.   

Two equations can be shown: the current path as specified 
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Fig. 3.  Dynamic window approach.  Obstacles are seen at O1 and O2 and the 

goal node is labeled G. 
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Fig. 2.  Robot with (a) zero turning radii, (b) actual turning radii, RT 
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Fig. 4.  Cell decomposition of region where one obstacle is in the middle of 

the robot’s vision.  A decision needs to be made to take path A (left curve) or 

path B (right curve).  Using the heuristics invoked in A* path B is chosen and the 

best-fit curve (path C) is implemented at point P.  The curvature at point P is 

equal to rl.  The grid surrounding the robot represents the environmental map 

being developed with A*.  Its size is equal to the dynamic window shown in Fig. 

3 and is govern by available sensors. 



by the TSP solution in Fig. 5(a): 

 
 {6, 7, 8, n} =  
 (d6C) + (D2+T3) + (T3+D3) + (T1) (3) 

 

and the opportunistic path shown in Fig. 5(b): 

 

 {6, 8, 7, n} =  

 (d6C) + (D1) + (D3+zT3) + (T2). (4) 

 

It must be shown that in order for the path to be optimal (not 

just ideally opportunistic) the new path eq. (4) is less weighted 

than the current TSP solution in (3). 

 

 (d6C) + (D1) + (D3+T3) + (T2) <  

 (d6C) + (D2+T3) + (T3+D3) + (T1)  (5) 

 

Subtracting (d6C) from both sides: 

 (D1) + (D3+T3) + (T2) <  

 (D2+T3) + (T3+D3) + (T1) (6) 

 

By trigonometry rules: 

 

 D1 = (D2
2
 + D3

2
)

1/2
 and 

 T1 = ((T3+D3)
2
 + T2

2
)

1/2
 (7) 

 

Combining (6) and (7): 

 ((D2
2
 + D3

2
)

1/2
) + (D3+T3) + (T2) <  

 (D2+T3) + (T3+D3) + (((T3+D3)
2
 + T2

2
)

1/2
) (8) 

 

Expanding and eliminating like terms: 

 

 γ  = (D3
2
+2*D3*T3+T2

2
+T3

2
)

1/2
  

 + T3 – T2 - (D2
2
 + D3

2
)

1/2
 + D2 (9) 

 

Therefore, when γ > 0 the alternative path is optimal and the 

course should be altered. 

 Once again it is essential that the local point-of-opportunity 

does not compromise the correctness and completeness of the 

global solution.  Therefore it is necessary that the point of non-

opportunity be the target point after the opportunity point. It is 

also sufficient in the case where multiple points-of-opportunity 

exists on the way to the original non-opportunistic point.  This 

would solve the problem where a point of interests resides in 

an area of limited opening such as a box shown in Fig. 6.   

 In Fig. 6 the explicit TSP solution dictates an A-B-C-D path.  

However, after γ analysis, point C is determined to be locally 

opportunistic and globally optimal.  Now an A-C-B-D solution 

exists.  While on route to point B, point D is determined to be 

locally opportunistic and globally optimal.  Once again the 

path is now changed to A-C-D-B.  By this repetitive process 

the γ analysis will prove to be globally correct and complete.  

There is an assumption made that all points are reachable by 

the robot. 

 The γ analysis is a technique that is only necessary to 

perform when crossing over an unexpected Voronoi polygon.  

Similar to OPEN and CLOSED (and RAISED and 

LOWERED) sets in Sentz’s A* algorithm a set needs to be 

created for Voronoi polygon crossings along the path between 

two points.  By setting a flag for an unexpected Voronoi 

polygon crossing the γ analysis will be limited to only those of 
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Fig. 5.  Following the path prescribed in Figure 1(d) the robot should traverse the points as shown in (a).  With the discovery of the obstacle it changes points to 

traverse the path shown in (b).  (c) The combination of (a) and (b) for γ analysis. 
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Fig. 6.  Map with more than one point of opportunity.  The original TSP dictates 

an A-B-C-D path.  After the γ analysis, A-C-D-B is locally opportunistic and 

globally optimal. 



true opportunity points.  Also, the polygonal crossings are used 

to speed up the “nearest” point question.  By knowing 

specifically which Voronoi polygon the robot resides in, the 

nearest point is apparent. 

 By both these techniques (γ analysis and polygon sets) O
3
 

expands traditional robot navigation for a multiple-target 

environment while still employing traditional obstacle 

avoidance strategies. 

III. IMPLEMENTATION 

Our methods for path planning and obstacle avoidance are 

being implemented to solve the challenges at the IGVC 

competition in May 2008.  One challenge is navigating a long, 

complex maze defined by white lines painted on approximately 

3-inch tall grass, and riddled with various complex obstacles 

(e.g. ramps, pits, trees, fencing, and various cones).  Using A* 

heuristics with dimensional constraints in the cost functions as 

outlined in [3] [4], both correct and complete decisions can be 

made.  With the addition of environmental mapping in a static 

environment, obstacle-processing time can be minimal.  In the 

second IGVC challenge of GPS navigation with minimal 

obstacle avoidance, our O
3
 method is ideal.  Our Wunderbot 4 

has laser ranges finders, vision system with color recognition, 

digital compass, GPS receiving, and optical encoders for 

sensor feedback. 

IV. PRELIMINARY RESULTS 

Table 1 shows the improved processing time seen in our 

code during multiple trials. Matlab R2007 was chosen to test 

our method because it supports graphing, provides functional 

toolboxes for efficient environmental geometry analyzing and 

straightforward integration into LabVIEW.  LabVIEW 

provides the real-time operating controls necessary for the 

Wunderbot 4.  The testing was done on an Intel Core Duo CPU 

@ 2.00GHz.  Overall, the Delaunay sub-graph provided an 

average improvement over 73%.  

V. FUTURE RESEARCH 

After competition, the Wunderbot 4 will serve as a platform 

for autonomous web-driven tours on the Elizabethtown 

College campus.  With our O
3
 implemented, a pre-determined 

or “way-point” driven tour is not necessary.  In fact, any path 

can be altered (or tailored) based on student traffic, 

construction paths, and/or availability of certain building/fields 

on campus.  By changing the weights of certain paths in the 

TSP solution and cost function (with obstacles), a fully 

autonomous robot is possible with O
3
. 

VI. CONCLUSION 

O
3
 is a unique method that combines traditional implicit and 

explicit methods to offer an optimal and opportunistic (and 

obstacle avoidant) solution to the areas of path planning for 

autonomous robots. By continually implying graphical 

techniques such as Voronoi polygons short cuts in calculations 

can be achieved as well as opportunistic paths through an 

unknown environment.  This methodology should also yield 

successful results for our Wunderbot 4 robot at international 

competition and as a robot tour-guide. 
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Processing Time Comparison (in seconds) 
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†
 

 

Table 1.  Reduction of processing time shown by using the Delaunay sub-graph in Fig 1(c) over the complete connected graph of Fig. 1(a). †Standard deviation was 

not calculated, as only one test run was available due to the time interval required to complete one pass.  
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