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2) Read the attached revised version of this publication: 

 
[2] Wunderlich, J.T. (2003). Defining the limits of machine intelligence. In Proceedings of 

IEEE SoutheastCon, Ocho Rios, Jamaica, [CD-ROM]. IEEE Press. 
 

3) Skim through this PPT lecture: 

http://users.etown.edu/w/wunderjt/ITALY_2009/TALK_MACHINE_INTELLIGENCE.pdf  

4) Watch PBS Frontline Video "Digital Nation" (http://www.pbs.org/wgbh/pages/frontline/digitalnation/view/ ) and question Mental 
Abilities #20 "MULTITASKING,"  #30 “SELECTIVE AWARENESS (FILTERING),” and  #42 "GROUP 
PSYCHOLOGY, SOCIAL NETWORKING, and LIVING IN THE CLOUD(s)"  

 
      

       
 
 

 

The original publication [2] above was published in 2003 and was later revised for lectures in 2003 by adding two 
Mental Abilities, #41 Awareness of Mortality, and #42 Group Psychology. I again updated this work in 2013 to 
include research in several new publications, and new survey data on mental abilities from recent iterations of my 
courses -- including more research on autonomy, and socially-networked engineering and architectural design. This 
revised paper is shown below. 
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Abstract - Machine Intelligence can be defined as encompassing 

all of the developments in both symbolic artificial intelligence 

and artificial neural networks. Traditional symbolic AI uses 

programmed heuristics and forms of knowledge representation to 

produce results in a seemingly more intelligent way than typical 

computer programs. Artificial neural networks are a form of 

connectionist computer architecture where many simple 

computational nodes are connected in an architecture similar to 

that of biological brains for the purpose of solving problems 

which require rapid adaptation or solutions where underlying 

governing equations are not known or cannot be easily 

computed. This paper explores the limits of machine intelligence 

by comparing the potential of these man-made systems to the 

“mental ability” of two common biological life forms; namely 

humans and bugs. The discussion begins with a study of basic 

animal abilities such as adaptation, self-preservation, motor-

coordination, and processing complex sensory information. More 

advanced abilities are then explored including tool-manipulation, 

creativity, emotions, group psychology, and autonomy. 
 

I. Introduction 
 

The following discussion is organized around five simple 

questions:   

1) What can a human do? 

2) What can a bug do? 

3) What can a conventional computer program do? 

4) What can a symbolic AI program do? 

5) What can an artificial neural network do? 
 

The human in question is one of average mental ability and 

the “bug” is one with simple predatory and self-protection 

capabilities (e.g., a spider). The “conventional computer 

program” is assumed to be running on a typical uni-

processor von Neumann type architecture machine. The last 

two questions assess the limits of machine intelligence. 

Traditional “symbolic” Artificial Intelligence (AI) programs 

use heuristics, inference, hypothesis testing, and forms of 

knowledge representation to solve problems. This includes 

“Expert Systems” and programming languages such as 

PROLOG and LISP, with the knowledge contained in the 

logic, algorithms, and data structures [2]. An artificial neural 

network is a form of connectionist computer architecture 

(hardware or software) where many simple computational 

nodes are connected in an architecture similar to that of a 

biological brain. The typical network is trained (i.e., learns) 

by changing the strength (weight) of inter-neuron 

connections such that multiple input/desired-output pairs are 

satisfied simultaneously; the final set of network weights 

represents the compromises made to satisfy multiple 

constraints simultaneously [1 to 5].  

 

II. Discussion 
 

An attempt to answer the five simple questions above is 

made for 20 different “basic animal abilities” and 22 

“complex abilities.” Each of the 42 is grouped by abilities 

which are often related. 
 

(1) Acquire and retain knowledge, and (2) Solve problems: 
These are often assessed for humans by standardized tests 

such as the SAT exam for college entrance. Although the 

“verbal” and “quantitative” section of the SAT would likely 

be incomprehensible to a spider, a spider can solve simple 

problems such as where to place its web. It also needs 

knowledge of its environment and prey. All man-made 

computational devices, intelligent or not, can solve 

problems and retain knowledge; they only differ in memory 

capacity, method of storage, method of solving, and class of 

solvable problems.  
 

(3) Learn and adapt: Both humans and spiders can easily 

learn and adapt to new environments and stimuli, and do so 

in both real-time and evolutionary time. Conventional 

computers have great difficulty with this. A human 

programmer is almost always needed to modify the 

programs. Traditional symbolic AI is somewhat adaptable to 

new input, however artificial neural networks are much 

better at this -- with an ability to generalize when presented 

new inputs. They can also learn very quickly when 

embedded in hardware [6, 7]. 
 

(4) Motor coordination, (5) Acquire energy, (6) Protect self: 
These have been referred to as “Mobility”, “Acquisition”, 

and “Protection” [8] and are essential for the survival of 

most animals. These have been somewhat implemented by 

conventional and intelligent machines (e.g., robotic motor 

control, power supplies, firewalls).   
 

(7) Sensory processing, (8) Real-time thought, (9) React 

instinctively, (10) Anticipate, (11) Predict: Most animals sense 

their surroundings and think quickly and often instinctually 

what to do. They therefore can anticipate outcomes. They 

can also predict by extrapolating known information. With 

the exception of instinct, conventional and intelligent 

machines can also do these things; however neural networks 

outperform symbolic AI when dealing with new stimuli and 

can be much faster (especially if embedded in hardware 

[6,7] ). 
 

(12) Communication: Animals, conventional computers, and 

intelligent machines all communicate. However nothing 

comes close to what humans can do with natural language 

processing. Traditional symbolic AI has been attempted this 

for decades, however neural networks have had more recent 

success in speech recognition including the difficult 

understanding of “context”[1 to 5]. 
 

(13) Generalize: Generalize is “to derive or induce a general 

principle or concept from particulars”[9].  Animals do this 

well. Conventional computers don’t; they give very specific 

responses to very specific inputs. Symbolic AI can only do 



this to the extent the program has been built with variations 

to consider. Neural networks are very good at this; with the 

ability to generalize such that outputs are produced which 

“best fit” (i.e., classify) a set of inputs (even when they 

differ from what the network was trained with).  
 

(14) Associate, (15) Recognize patterns: All animals do this 

well; however no animal surpasses the human’s ability to 

associate concepts and memories. Conventional computers 

do this in a very limited sense; they can associate by 

correlating data and can recognize the simple encoded 

patterns of bit-streams input by humans and other machines. 

Symbolic AI programs do this better, but are still limited by 

the fixed structure (i.e., the “state-space” is fixed regardless 

of how efficiently it is searched). Neural networks are very 

good at association – with an ability through generalization 

to associate patterns such as never-seen hand-written 

characters to recorded ASCII representations. Neural 

networks are widely used for recognizing image and speech 

patterns [1,4].  
 

(16) Robust under partial failure: Evolution has insured that 

animals can often continue to function when one or more 

subsystems fail (including parts of the brain). Conventional 

computers can’t do this to any significant degree; even a 

simple one-bit error in program execution can sometimes 

cause a system to “lock-up.” Symbolic AI programs running 

on conventional computers (or even super-computers) are 

also likely to not function when the underlying computer 

system fails. Neural networks are very robust under partial 

failure and have the ability to partially function when some 

neurons or inter-neuron connections fail [1 to 5]. 
 

(17) Autonomous thought: Most animals are free to make their 

own decisions. Conventional computers and symbolic AI 

programs are not autonomous unless they the software 

developer creates the code to run without any human 

intervention or oversight.  Neural networks, with their 

ability to learn, generalize, deal with never-seen input,  and  

think in a distributed fashion do have the potential to 

become entirely autonomous. Therefore, all computer and 

forms of machine intelligence can be given autonomy if the 

humans so choose; but how tightly should we hold the 

leash? [20, 21, 22, 25]. 
  

 (18) Drive to reproduce: With the exception of programming 

dictated by genes (including the drive to reproduce), many  

animals, and humans, are free to make their own decisions 

including suppressing the urge to reproduce. All machines 

are nowhere close to wanting to reproduce (unless someone 

programs this). But it’s not beyond the realm of possibility 

that someday far in the future intelligent machines could 

decide to reproduce.   
 

(19) Stability, Repeatability, Predictability: There is a definite 

degree of uncertainty associated with all animal behavior. 
“physics has managed to incorporate uncertainty into its 

prospectuses, and there is no reason to believe that the scientific 

study of behavior can not successfully incorporate a 

"biobehavioral uncertainty principle" as well…..Intrinsic 

variability not only removes the spectra of absolute predictability, 

but may provide a basis for admitting more fully into scientific 

discourse the concept of free will…. behavior is fundamentally 

exploratory” [10]. Conventional computers and symbolic AI 

don’t have this problem (or virtue). They simply respond in 

a pre-programmed way. Neural networks however can 

produce unexpected results; especially when dealing with 

never-seen input. 
 

(20) Multitask: The evolution of most biological life has led 

to brains with multiple subsystems working in a coordinated 

fashion; some performing basic system regulation (e.g.,  

pulmonary, respiratory, temperature, and motor control), 

some pre-processing information before relaying it to higher 

reasoning centers (e.g., visual cortex), and some performing 

higher reasoning [13].  Conventional computers are 

becoming better at this, with subsystems performing tasks 

simultaneous to the functioning of the CPU (Central 

Processing Unit). Examples are DMA (Direct Memory 

Access), and graphics-board processors [11,12]. It’s 

important to note that “multitasking” in computer industry 

nomenclature often implies time-sliced use of the CPU and 

not true simultaneous, parallel functionality. This is one 

reason to be careful when comparing human performance 

with typical uni-processor computer performance. When 

discussing brain performance, one must consider the brain’s 

high degree of parallelism and pre-processing. Multitasking 

is typically only found in symbolic AI programs when 

written for multi-processor machines. Multitasking is 

however a significant part of artificial neural network 

learning. Recent research shows that humans immersed in 

technology reach a limit where multitasking adversely 

effects other mental abilities [24]. 
  

(21) Abstraction, (22) Intuition, (23) Common sense: Abstract 

is: “having only intrinsic form with little or no attempt at pictorial 

representation or narrative content” [9].  Intuition is: “Knowing 

without conscious reasoning” [9].  Combining these definitions 

can yield insight into the more complex workings of the 

human brain (i.e., partially defined or disconnected thoughts 

could lead to higher reasoning). Conventional computers 

and symbolic AI programs simply respond in a pre-

programmed way. The ability of neural networks to learn by 

repeatedly modifying inter-neuron connection weights until 

a compromise is reached could be a form of abstraction. 

Common sense is: “Sound and prudent but often unsophisticated 

judgment” [9].  Some very analytical people are sometimes 

said to not have common sense; perhaps the need for logic 

and “sophisticated judgment” to prove hypotheses may 

hinder the ability to temporarily think in a disconnected 

fashion – even if an abstract, intuitive, and somewhat 

unsophisticated thought could lead to a common sense 

answer. New research is showing that advances in 

computing will soon yield machines that can exhibit these 



qualities by drawing from the equivalent of multiple brain 

centers simultaneously [23]. 
 

(24) Manipulate tools: Although a spider can design and 

construct elaborate webs, it is not likely to envision 

extensions of its appendages (i.e., tools) to do so. 

Manipulating tools is exclusive to more evolved animals and 

arguably can be attributed to humans becoming bipedal; 

allowing our front “feet” to become hands for manipulating 

tools [14]. Conventional and intelligent computational 

systems can also manipulate tools by creating signals to 

send to actuators (e.g., motors, etc.), which in turn position 

and orient tools. This is a definition of robotic-arm control. 

Not only what a robotic arm holds, but the arm itself can be 

considered a tool for the computer to realize manipulation of 

the physical world around it. 
 

(25) Heuristics, (26) Inference, (27) Hypotheses testing: Most 

animals don’t consider every possible way to react to a 

situation before acting (i.e., an exhaustive search); they 

instead apply heuristics to more efficiently select an action. 

They also recognize when one scenario infers another, and 

can solve problems by testing multiple hypotheses to result 

in one solution. Conventional computer programs only 

somewhat do this. Symbolic AI programs (especially 

“Expert Systems”) can do all of these things [2]. Most 

neural networks however are not well suited for the step by 

step process needed to apply heuristics or hypothesis test, 

but can somewhat infer results for given input data 

(including never-seen input).  
 

(28) Self-discipline & Impulse control, (29) Ethical behavior: 
Despite genetic, instinctual, programmed animal “drives,” 

humans can override their programming to maintain a level 

of self-restraint, and can even develop a set of rules (i.e., 

ethics and values) to maintain civilization. Bugs seem to act 

purely instinctually and show no signs of ethical 

imperatives. Conventional computer programs are incapable 

of these things; however symbolic AI programs can 

incorporate all of the rules (and therefore ethics and values) 

of a given human. Also, you could train a neural network to 

respond “ethically” to given situations.  
 

 (30) Selective awareness (filtering): Most animals have the 

ability to focus on a task while ignoring distractions such as 

extraneous noise or motion around them. They are also able 

to find images semi-obscured by camouflage or clutter. 

Conventional computer programs and symbolic AI 

programs can achieve this through pre-processing of input 

data by using signal and image processing techniques. Also, 

several types of neural networks, with their ability to 

generalize and deal with never-seen input, can perform very 

well when given “fuzzy” input [1 to 5]. Recent research 

shows that humans immersed in technology reach a limit 

where multitasking adversely effects their ability to focus 

[24]. 
 

(31) Open to inspection: Despite many years of scientific 

advances in understanding both the biological and 

behavioral function of animals brains, tracing mental 

thoughts is still less “exact” then tracing the execution of a 

conventional or symbolic-AI program. Neural networks are 

less open to inspection than programs because of the many 

compromises made in changing inter-neuron weight values 

during the training (learning) phase (i.e., to satisfy many 

input/desired-output pairs simultaneously).  
 

(32) Emotions, (33) Imagination, (34) Creativity, (35) Passion, 

(36) Playfulness: The ability to feel, to imagine and create, to 

have passions and ambitions, and to experiment through 

playful curiosity are still primarily human traits; and 

although other animals may exhibit these abilities, it is 

unclear what a spider can think in these regards. Play seems 

to have also played an important role in evolution: “Given 

that the adaptiveness of behavior itself derives from an 

evolutionary process in which variability and play are absolutely 

essential …..playfulness is indeed not only to be enjoyed but to be 

accorded high value for its fundamental role in the success of all 

organisms, including human” [10]. No man-made device is yet 

capable of these things. New research is showing that 

advances in computing will soon yield machines that can 

exhibit these qualities by drawing from the equivalent of 

multiple brain centers simultaneously [23]. 
 

(37) Empathy, (38) Courage, (39) Leadership: The ability to 

empathize with the feelings of others, to take risks including 

self-sacrifice for the benefit of others, and to display 

leadership qualities (e.g., vision, compassion, motivation of 

others), are still primarily human traits; and although other 

animals may possess these mental abilities, it is unlikely a 

spider does.  No man-made device is yet capable of these 

things. However, simple programmed responses to 

perceived human emotion are now possible [15].  
 

(40) Self-Awareness, (41) Awareness of mortality: It is unlikely 

that a spider could recognize itself in the mirror or could 

clearly recognize impending doom. However, humans can 

see themselves, their lives, their influence on others, their 

influence on the future, and their mortality. Conventional 

computer programs can’t do these things. Also, it seems 

unlikely (but not impossible) that intelligent machines could 

ever become self-aware. However, it is very likely they 

could achieve immortality as long as there is an ample 

supply of replacement parts. 
  

(42) Group Psychology, Social Networking, and Living in the 

Cloud(s): Humans can play, work, raise children, and wage 

war as teams.  They can also collectively share beliefs. 

Although some bugs work in a collective (e.g., ants, bees, 

etc.), most spiders appear to be isolated thinkers. Networked 

conventional computer programs and Intelligent machines, 

especially if implemented with parallel processing 

architectures, have the potential to implement the equivalent 

of group psychology, and new research in Social 

Networking and Crowd Sourcing shows that humans can 



collectively achieve as teams of virtual avatars in semi-

realistic simulated worlds [26]. 
 

 

III.    Intelligent Machine Platforms and Devices 
 

Typical predictions of when computer performance will 

reach that of the human brain employ Moore’s Law to 

extrapolate increases in computing speed or number of 

transistors per chip: 

Qnew = Qold * (2 ^ (n/1.5))                         (1) 
 

Where Qold is today’s computing speed (or chip density), 

and Qnew is the computing speed (or chip density) expected 

n years in the future (i.e., speed and chip density double 

every 18 months). Although this law remains valid to-date, 

it must eventually break down. If we look less than a 

hundred years into the future, assuming a present day Qold 

speed of 3Ghz and a chip density of 10 million transistor per 

chip, Moore’s Law predicts a Qnew that would require 

electricity to travel through a transistor faster than the speed 

of light and more transistors on a chip than the number of 

atoms that would fit in that volume. This type of prediction 

can also be misleading if one doesn’t consider the relative 

degree of parallel processing that occurs in many biological 

and man made intelligence systems. A significant problem 

to solve is multitasking manmade subsystems as efficiently 

and elegantly as the human brain. To explore the limits of 

multitasking in machine intelligence, combine the 

understanding of mental abilities as discussed above (and 

summarized in Table 1.) with an understanding of the 

“Levels of Computing” as defined in Table 2. The degree of 

parallelism (DOP) [11] needed to be comparable to a human 

brain is simply not found in PC’s, Workstations, or even 

mini-computers. Only in some supercomputers does the 

parallelism begin to become close to what might be 

required. Some embedded systems may however be able to 

achieve these goals by having many simple devices working 

independently [7]; however most embedded systems lack 

the computation power (and precision) of even the simplest 

PC [16]. They have the DOP but not the processing power. 

Multitasking is typically only found in symbolic AI 

programs when written for multi-processor machines. 

Multitasking is however a significant part of artificial neural 

networks where learning occurs between the many simple 

computational nodes. This can be compared to MPP 

(Massively Parallel Processing) supercomputers. If an MPP 

machine could be built with billions of nodes (like the 

human brain), instead of just thousands (to-date), it could 

possibly implement an artificial neural network to rival all 

of the functionality of the human brain. 
 

Another hurdle to overcome for those hoping to build 

intelligent machines that rival human brains is choosing an 

architecture that is either: 

1. structurally similar to, or  

2. merely produces results in a similar fashion to 

the human brain (i.e., “bottom-up” vs. “top-down” design). 

Most artificial neural networks are top-down designs which 

learn and can be trained to react to external stimuli such that 

they mimic certain biological brain function. They learn by 

repeatedly applying mathematics to change inter-neuron 

connection strengths (weights) until the outputs converge to 

desired tolerances [1,3,4]. The network is trained (i.e., 

learns) by changing the strength of connections such that 

multiple input/desired-output pairs are satisfied 

simultaneously; the final set of weights represents the 

compromises made to simultaneously satisfy the constraints.  

A major problem in implementing this is that these 

computations require matrix and vector manipulations, but 

are often run on von-Neumann type uni-processor machines 

that have a “bottle-neck” forcing non-parallel computations. 

SMP (Symmetric Multi-Processing) machines can improve 

performance; however the best machines for these 

calculations are MPP or vector-register supercomputers, or 

embedded, application-specific, highly parallel systems – 

especially those which can provide learning in real-time. 

The all-digital vector-register neural network processor 

(with on-chip learning) proposed by Wunderlich in [7] is 

one example of this. 
 

The “bottom-up” approach is to build a man-made system 

which functions like a biological brain at the circuit-level. 

The theory in [17] is to build artificial dendritic trees as RC 

analog circuit elements (i.e., built with resistors and 

capacitors) that produce signals close to those propagating 

through the dendritic tree inter-neuron connections of the 

human brain. Fig. 1 is a VLSI chip built by Wunderlich [18] 

to implement this theory. It has 64 neurons built from 

approximately 10,000 transistors on a 2mm x 2mm die. 
 

Even though the semiconductor industry continues to find 

ways to increase the number of transistors per unit area, the 

chip-area required to include billions of neurons (like that of 

the human brain) would need to be millions of times larger 

than a typical chip.  One reason for this is that our brains are 

three-dimensional whereas integrated circuits are mostly 

two-dimension (despite multiple levels of layerization). 

Another problem is connecting all of these neurons since the 

wire routing would be in mostly two dimensions. Even with 

several layers of metallization (for wires), it would be 

extremely difficult to connect billions of neurons (with each 

requiring thousands of connections to other neurons). 

Perhaps the most difficult problem to overcome with this 

type of implementation is mimicking human learning where 

inter-neuron connections are 

not only strengthened or 

weakened during learning, 

but are often grown. Wires 

on chips need to be fixed, or 

at-best of variable resistance, 

and considering the required 

extensive connectivity 

between billions of neurons, 

would likely take many years 

to be realized.  



Figure 1.  Neural network chip by Wunderlich [18, 19]. 

Table 1.  Mental Ability Matrix 
 

 

   

Can 

 human 

 do? 

 

Can 

 bug 

 do? 

(spider) 

Can 

 Conventional 

Computer 

Program 

 do? 

Can 

 Symbolic 

 AI 

Program 

 do? 

Can 

 Artificial 

 Neural 

Network 

 do? 

 

 

Comments 

 BASIC ANIMAL ABILITIES:       
1 Acquire and retain knowledge yes yes yes yes yes  
2 Solve problems yes yes yes yes yes  
3 Learn and adapt yes yes no somewhat yes Evolution 

4 Motor coordination  yes yes somewhat somewhat somewhat Survival 

5 Acquire energy yes yes somewhat somewhat somewhat Survival 

6 Protect self yes yes somewhat somewhat somewhat Survival 

7 Sensory processing  yes yes yes yes yes  
8 Real-time thought yes yes yes yes yes  
9 React instinctively yes yes no not yet not yet  
10 Anticipate yes yes yes yes yes  
11 Predict yes yes yes yes yes  
12 Communicate yes yes yes yes yes  
13 Generalize  yes yes no somewhat yes  
14 Associate yes yes somewhat somewhat yes  
15 Recognition patterns yes yes somewhat somewhat yes  
16 Robust under partial failure yes yes no no yes  
17 Autonomous thought  yes yes if 

programmed  

somewhat soon How tightly to 

hold the leash? 
18 Drive to reproduce yes yes no not yet not yet  
19 Stability, repeatability, predictability somewhat somewhat yes yes somewhat Uncertainty 

20 Multitask to a point yes yes no yes  

 COMPLEX ABILITIES:       

21 Abstraction yes unlikely no no somewhat  

22 Intuition  yes unlikely no not yet soon  

23 Common sense yes yes no not yet soon  

24 Manipulate tools yes no yes yes yes Evolution 

25 Heuristics yes yes somewhat yes no  

26 Inference yes yes somewhat yes somewhat  

27 Hypothesis testing yes somewhat somewhat yes no  

28 Self-discipline, impulse-control yes unlikely no somewhat no  

29 Ethical behavior yes unlikely no somewhat somewhat If  coded/trained 

30 Selective awareness (filtering) to a point yes yes yes yes  

31 Open to inspection somewhat somewhat yes yes somewhat  

32 Emotions yes unlikely no not yet soon  

33 Imagination yes unlikely no not yet soon  

34 Creativity  yes unlikely no not yet soon  

35 Passion yes unlikely no not yet soon  

36 Playfulness yes unlikely no not yet soon Evolution 

37 Empathy  yes unlikely no not yet soon  
38 Courage  yes unlikely no not yet soon  
39 Leadership yes unlikely no not yet not yet  
40 Self awareness yes unlikely no not yet not yet  
41 Awareness of mortality yes unlikely immortal? Immortal? Immortal? Replaceable parts 

42 Group psychology,  Social 

Networking, and Living in the 

Cloud(s) 

yes unlikely somewhat somewhat somewhat Networking,  

Crowd-sourcing, 

Socially-

networked design 



 IV.    Conclusions 

 

Machine Intelligence can be defined as encompassing all of 

the developments in both symbolic artificial intelligence and 

artificial neural networks. This paper explores the limits of 

machine intelligence by comparing the potential of these 

man-made systems to the “mental ability” of two common 

biological life forms; namely humans and bugs; this also led 

to a discussion of various machine platforms and devices for 

implementing machine intelligence, and to the observation 

that perhaps complex mental abilities like emotions and 

creativity, which are now known to be processes that draw 

on many parts of the brain [23], can be compared to the 

Group psychology of Social Networking,, which in a macro way 

mirrors the complex collaborative micro processes in the 

brain for emotions and creativity. Designing over the 

internet using crowd-sourcing and socially-networking is 

discussed in [26] and shown in Figures 2. 

 
 

  
 

  
 

  
 

  
Figure 2. 2012 Elizabethtown College Architectural crowd-

sourcing projects; and related 2013 key-note talk and paper 

in Osaka, Japan [26]. 
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Table 2. Levels of Computing 
 

LEVEL TYPICAL 

APPLICATION 
CCHHAARRAACCTTEERRIISSTTIICCSS HHAARRDDWWAARREE  

AAnndd  

DDEEVVIICCEESS  

 

OOPPEERRAATTIINNGG  

SSYYSSTTEEMMSS  

 

 FOR MACHINE 

INTELLIGENCE? 

Embedded RReeaall--ttiimmee  ccoonnttrrooll,,  aauuttoommoobbiilleess,,  

aapppplliiaanncceess,,  ffaaccttoorryy  aauuttoommaattiioonn 
CChheeaapp,,  ssmmaallll,,  aanndd  oofftteenn  

ffaasstt  

 

MMiiccrrooccoonnttrroolllleerr::  ((IInntteell,,  

MMoottoorroollaa,,  PPIICC’’ss))  

MMiiccrroopprroocceessssoorr::  ((IInntteell,,  

MMoottoorroollaa,,  PPoowweerrPPCC))  
ASIC: (Application 

Specific IC’s) 

NNoonnee  oorr  ccuussttoomm  

 

Good for high-speed real-
time-learning neural 

network applications. 

Not usually used for 
symbolic AI programming 

PC GGeenneerraall--ppuurrppoossee  ““llooww--eenndd  

ccoommppuuttiinngg””  
 

UUssuuaallllyy  ffaasstteerr  tthhaann  

eemmbbeeddddeedd,,  bbuutt  

ootthheerrwwiissee  rreellaattiivveellyy  

ssllooww,,  <<  ~~$$55000000 

MMiiccrroopprroocceessssoorr  ((IInntteell,,  

MMoottoorroollaa,,  PPoowweerrPPCC))  

 

WWiinnddoowwss,,  DDOOSS,,  

MMAACC  OOSS,,  BB,,  

LLiinnuuxx 

Acceptable for neural 
network simulations and 

symbolic AI programming 

PC Server 

          or  

 
Workstation 

LLAANN  sseerrvveerr  ffoorr  ~~110000  ppeeooppllee,,  

  

33--DD  ssiimmuullaattiioonnss,,  VVLLSSII  cciirrccuuiitt  

ddeessiiggnn  ((ee..gg..,,  ““CCaaddaannccee””)) 

FFaasstt,,  ~~$$33000000  ttoo  

~~$$2200,,000000  

 

MMuullttiippllee  mmiiccrroopprroocceessssoorrss  
((IInntteell,,  MMoottoorroollaa,,  PPoowweerrPPCC))    

SSiilliiccoonn  GGrraapphhiiccss  ,,  SSUUNN  oorr  

IIBBMM  RRSS66000000  wwoorrkkssttaattiioonnss 

WWiinnddoowwss  NNTT,,  

UUNNIIXX,,  AAIIXX  

 

Good for neural network 

simulations and symbolic 

AI programming 

Mini- 
    Computer 

LLAANN  sseerrvveerr  ffoorr  ~~550000  ppeeooppllee  
 

FFaasstt,,  ~~$$110000,,000000  
 

IIBBMM  AASS440000,,  AAmmddaahhll,,  HHPP,,  

HHiittaacchhii  

 

UUNNIIXX,,  MMVVSS,,  

VVMMSS,,  OOSS  339900  

 

Good for neural network 
simulations and symbolic 

AI programming 
Super- 

    Computer 
SSMMPP::  LLAANN,,  WWAANN,,  oorr  IInntteerrnneett  

sseerrvveerr  ffoorr  11000000’’ss  ooff  ppeeooppllee,,  AAiirr  

ttrraaffffiicc  ccoonnttrrooll,,  NNYYSSEE  

MMPPPP::  GGrraanndd  cchhaalllleennggee  

aapppplliiccaattiioonnss,,  CChheessss 

VVeeccttoorr::  MMaattrriixx--iinntteennssiivvee  ggrraanndd  

cchhaalllleennggee  aapppplliiccaattiioonnss 

EExxttrreemmeellyy  ffaasstt,,  

~~$$11,,000000,,000000  ttoo  

~~$$1100,,000000,,000000  

 

SSMMPP::  IIBBMM  SS//339900,,  

MMPPPP::  IIBBMM  SSPP22  ((ee..gg..,,  

““DDeeeepp  BBlluuee””)),,  

VVeeccttoorr::  CCRRAAYY  

 

SSMMPP::  UUNNIIXX,,  

MMVVSS,,  VVMMSS,,  OOSS  

339900  

MMPPPP::  ccuussttoomm  

ddiissttrriibbuutteedd  OOSS  

VVeeccttoorr::  ccuussttoomm  

vveeccttoorr  OOSS 

Very good for neural 

network simulations and 
symbolic AI programming 
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